
The trial division or “naif” factoring algorithm.

Let n 2 N be a composite number. Then n has at least a prime factor p 
p
n. The trial division

factoring algorithm consists of dividing n by all the primes s 
p
n, until the smallest prime factor

p is found (assuming that the list of primes up to
p
n is already available).

By the Prime Number Theorem, ⇡(p), the number of primes s  p, can be approximated
with p

ln p . To obtain the smallest prime factor p of n, it takes p
ln p divisions with remainder n : s,

for s  p. Then the complexity of this algorithm can be estimated as

O(
p

ln p
log n log p) = O(p log n),

whcih is exponential in the smallest factor p.

The Pollard ⇢ factoring algorithm.

The Pollard ⇢ factoring algorithm was introduced by John Pollard in 1975. It is based on the
birthday paradox and it is very e�cient in determining the small factors of a given number.

The birthday paradox. Let X be a set with N elements. Pick a random element from X. If
this action is repeated k times, then the probability p(k) that some element is picked twice can be
estimated as

p(k) > 1� e�k(k�1)/2N .

Proof. The probability p(k) that some element is picked twice is given by

p(k) = 1�
N(N � 1) . . . (N � k + 1)

Nk
= 1� (1�

1

N
) · . . . · (1�

k � 1

N
) = 1�

k�1Y

i=1

(1�
i

N
).

From the inequality 1� x < e�x, for x 6= 0, one has

k�1Y

i=1

(1�
i

N
) <

k�1Y

i=1

e�
i
N = e�

Pk�1

i=1
i
N = e�k(k�1)/2N ,

from which the required estimate follows

p(k) > 1� e�k(k�1)/2N .

Remark. In particular,

p(k) >
1

2
, for k > 1, 177

p

N ; p(k) > 1� e�5
⇠ 0.9932, for k > 3, 16

p

N.

In short, we may say that picking k times an element out of a set of N elements, there is a positive
probability to pick the same element twice.

Conversely, if picking k times an element out of a set of a unknown cardinality N we got
distinct elements, then N was likely larger than k2.

How the birthday paradox is applied to the factorisation of an integer n?

In this case the set X is Zn, the group of residue classes modulo n. Let {xj}
k
j=1 be a random

sequence of length k in Zn. For every divisor p of n, the sequence descends to a random sequence
in Zp.

• If p < k2 then, by the birthday paradox, with high probability two elements of the sequence
coincide in Zp. The smaller p is with respect to k2, the more probable is a coincidence to occur
in Zp.

• Even without knowing the factorisation of n, a coincidence in some Zp can be detected by taking

gcd(xi � xj modn, n), i, j = 1, . . . , k.

Indeed, one has gcd(xi � xj modn, n) > 1 if and only if there is a divisor p of n for which xi =
xj mod p. (it is unlikely that gcd(xi � xj modn, n) = n, unless k �

p
n). In this way gcd(xi �

xj modn, n) will provide a non trivial factor of n.

• A crucial idea in the Pollard ⇢ algorithm is to produce a random sequence in Zn by evaluating
the iterates of some function f :Zn ! Zn on a random element x0 2 Zn

x1 = f(x0), x2 = f (2)(x0) = f � f(x0), . . . , xk = f (k)(x0) = f � f . . . � f(x0).

The function which is usually taken is f(x) = x2 + 2 modn. Once in the sequence a coincidence
occurs

xa = xb, for some b > a � 1, (⇤)

then the sequence becomes periodic of period b � a, describing the letter ⇢ which gives the name
to the algorithm.

Xa=Xb

X1

X2

The letter ⇢ described by the sequence.

• Another crucial idea of the algorithm is the following observation, which the reduces the number
of gcd’s to be performed from k2 to k.

Lemma. (Floyd’s trick) If for some 1  a < b one has

xa = xb mod p,

for some divisor p of n, then there exists a  m  b such that

xm = x2m mod p.

Dim. Suppose that there exist a and b > a such that xb = xa mod p. From then on the sequence
becomes periodic of period b� a. We claim that there exist a  m  b and s 2 N for which

m+ s(b� a) = 2m , m = s(b� a).

Let’s check that s = [a
(b�a)] + 1 works. Set m = ([a

(b�a)] + 1)(b� a). One has indeed

m = ([
a

(b� a)
] + 1)(b� a) �

a

(b� a)
(b� a) = a

m = ([
a

(b� a)
] + 1)(b� a)  (

a

(b� a)
+ 1)(b� a) = b.

As a result, one has
xm ⌘ x2m mod p,

as claimed.

• Because of the above Lemma, one should form two parallel sequences

xi = f (i)(x0), and yi = f (2i)(x0),

and take
gcd(xi � yi modn, n), for i = 1, . . . k.

By the birthday paradox this procedure is likely to detect any non trivial factor p of n of size  k2.

Remark. The Pollard ⇢ algorithm can be also be applied to solve the DLP in a cyclic group G. In
order to apply the birthday paradox one must be able to produce random sequences in G, which
at the same time can be controlled and allow us to deduce the information we want.

For example, if G is the group of points of an elliptic curve over Zp, with p prime, the con-
struction of f is more complicated. See L. Washington.

