
SEAMS school Ho Chi Minh City, June 12-22, 2023

• An algorithm is a sequence of steps which, starting from an input, produces an output.

• It is important to estimate the complexity (“running time”) of an algorithm, namely the amount
of bit operations which produce the output, in terms of the size of the input. This estimate only
depends on the algorithm and not on the computer used to run it. Generally we are interested in
the asymptotic behaviour of the complexity when the size of the input “goes to infinity”.

• In our context the input generally consists of positive integers n1, . . . , ns. The size of a positive
integer n is measured by its number of bits, which is given approximately by log n := log2 n. In
fact, one has

2k n = 2kak + . . .+ 2a1 + a0 2k+1, aj 2 {0, 1}, ak 6= 0,

from which it follows
k log n k + 1.

The number of bits of n is about 3 times the number of decimal digits of n: log2 n ⇠ 3 log10 n.

• An algorithm is polynomial time if the complexity is bounded by a polynomial function in the
size of the input, i.e. it is O(log na1

1 · . . . · log nas
s), for some fixed aj 2 N, independent of nj ; it is

exponential time if the complexity is O(na1
1 · . . . · nas

s), for some fixed aj > 0, independent of nj ; it
is subexponential time if the complexity is O(2(logn1)

↵1
· . . . · 2(logns)

↵s
), for some fixed 0 < ↵j < 1.

• The crucial di↵erence between polynomial and exponential (or subexponential) algorithms is the
following. Suppose the input is a positive integer n. In a polynomial time algorithm, if we double
the size of the input, then the amount of calculations required to produce the output is multiplied by
a constant factor, independent of the size of the input. For example, if the complexity is O(logk n),
then

(2 log n)k = 2k logk n.

in an exponential time algorithm, if we double the size of the input, then the amount of calculations
is multiplied by factor which is exponential in the size of the input. For example, if the complexity
is O(2k logn), for k 2 N�1, then

2k 2 logn = 2k logn
· 2k logn.

Consequently, the amount of calculations explodes, when log n ! 1.

• The algorithms which we describe involve mainly arithmetic operations in Z or in Zn.

Example. The complexity of the arithmetic operations in Z is polynomial in the size of the input.
Let n,m 2 N, with n � m > 0. Then

(a) n±m O(log n+ logm) = O(log n);

(b) n ·m O(log n logm) = O((log n)2);

(c) n : m O(log n logm) = O((log n)2);

Proof: (a) The sum n+m
akak�1 a1a0+

bhbh�1 . . . b1b0

is obtained by at most h sums and k carryings (we sum the bits in base 2, by the rules 0 + 0 = 0,
1 + 0 = 0 + 1 = 1 and 1 + 1 = (10)). Hence it has complexity O(log n+ logm) = O(log n).

(b)

(c)

Example. The complexity of the Euclidean algorithm to compute the gcd(n,m), with n � m > 0,
is O((log n)3).

Proof: Let n � m > 0 be positive integers. The Euclidean algorithm consists of a sequence of
divisions with remainder:

m = r0

n = q0m+ r1, 0 < r1 < m

r0 = q1r1 + r2, 0 < r2 < r1

r1 = q2r2 + r3, 0 < r3 < r2
... =

...

rk�1 = qkrk + rk+1, 0 < rk+1 < rk
... =

...

The remainders form a decreasing sequence of non negative integers

0 . . . rk+1 < rk < rk�1 < . . . r1 < r0 = m,

the smallest positive element of which is the greatest common divisor gcd(n,m).

The first division requires about log n logm operations, the second logm log r1, etc . . . Each division
requires at most log n logm operations. It remains to estimate how many divisions are necessary
to obtain gcd(n,m).

Fact. Every two steps the remainder is cut in half: rk+2
1
2rk.

Proof: If rk+1
1
2rk, then automatically rk+2 < rk+1

1
2rk holds true. Suppose now that

rk+1 > 1
2rk. From the equation rk = qk+1rk+1 + rk+2 one deduces that qk+1 = 1. Then it follows

that rk+2
1
2rk, as claimed.

The above fact implies that gcd(n,m) is obtained by at most 2 logm divisions with remainder.
Consequently the complexity of the Euclidean algorithm can be estimated as

O(2 logm · log n logm) = O((log n)3).

Remark. If the remainders would decrease of one unit at each step, then it would take m = 2logm

divisions to obtain gcd(n,m). In that case, the complexity of the algorithm would be exponential
in logm.

Example. The complexity of the arithmetic operations in Zn is polynomial in log n, for any input
x, y in Zn.

(a) x± y O(log n);

(b) x · y O((log n)2);

(c) x�1
O((log n)3).

Proof: (a)

(b)

(c)

Example. (computing powers by successive squarings, in Z and in Zn).
(a) Let x, a 2 N. The complexity of computing xa in Z is exponential in log a.

(b) The complexity of computing xa in Zn is given by

O(log a (log x)2).

Hence it is polynomial both in log x and log a.

Proof. (a) The output xa has size
log xa = a log x.

Writing the output is already exponential in log a. This gives a lower bound for the complexity of
the whole calculation, which then exponential in log a.

To prove (b), we describe an e�cient method of computing exponentiations in Zn. Let

a = 2hah + . . .+ 2a1 + a0, with aj 2 {0, 1}, ah 6= 0,

be the binary expansion of the exponent, where h is approximately log a. Then

xa = xah2
h+ah�12

h�1+...+a12+a0 =
hY

i=0,ai 6=0

x2i .

Since x2i = x2i�1

·x2i�1

, all the powers up to x2h are obtained by h successive squarings modulo n

x2 = x · x modn, x22 = x2
· x2 modn, . . . , x2h = x2h�1

· x2h�1

modn.

Since each squaring modulo n has complexity O((log n)2), the complexity of the above computa-
tion is O(log a(log n)2). The complexity of multiplying all of them together has also complexity
O(log a(log n)2). Consequently, the whole process has complexity

O(log a(log n)2 + log a(log n)2) = O(log a(log n)2),

and it is polynomial both in log x and in log a.

