Many of the following exercises require a computer (PARI/GP or SAGEMATH).

3. Trial division factoring algorithm

1. Let n be a composite positive integer.
(a) Verify that the complexity of the trial division algorithm, where we divide n by all primes p < y/n
in increasing order until a factor is found (assuming that the list of such primes is available) is

O(plogn),

where p is the smallest factor of n.
(b) Verify that the complexity of the trial division algorithm, where we divide n by all positive integers
s < 4/n in increasing order until a factor is found, is

O(plogplogn).

2. Let n = p- ¢ be an integer, product of two primes p < q.
(a) Estimate the variation in the amount of calculations to factor n with trial division, when the
smallest factor p increases by one digit and ¢ remains the same.
(b) Estimate the variation in the amount of calculations to factor n with trial division, when the
smallest factor p remains the same and ¢ increases by one digit.
(¢) Do some experiments with PARI/GP (use naif(n) and time them).

3. On the base of the estimates of the previous exercise, exhibit integers whose factorisation with trial
division requires one month, one year, 10 years.

4. Pollard p — 1

1. Let K =2%-32.5.7.
(a) Let n = 95431706263. Take a random @ € Z*. Compute b = @ mod n. Compute the divisor
d = ged(b — 1,n) of n and the cofactor n/d.
(b) Let n = 57841557763361. Take a random @ € Z%. Compute b = @’ mod n. Compute the divisor
d = ged(b—1,n) of n and the cofactor n/d.
(¢c) Why does the algorithm find these factorisations?

2. (use pminus(n, B)) Factor as much as possible the three following integers by the Pollard p — 1 method,
by progressively increasing the smoothness bound B.

n1 = 648094404671778064954604256557085019633635801783629254997370651459604545391

ng = 870085944154182961097983310733553997642948638641712158092697230355367338367

nsg = 39080295191118915018134958938415108346749622881999563438557941763777383787997006
813603591930551730233811157221825171

ng = 57910112155118020986691000616209882696955852203304284420354228211689903
41093047692287240333682685742862801

(b) For a prime factor p found by this algorithm, compare the prime decomposition of p — 1 with the
smoothness bound B.

(c¢) Verify that, in the successful cases, the algorithm breaks the number n as m x ¢ where m is the
product of all prime factors p, all of which have the property that p — 1 is B-smooth.



5. Pollard p

1.

Let n be a composite integer of 200 digits. After 10000 iterations the Pollard p algorithm did not find
any factors. What can we conclude about the size of the prime factors?

Let n be a composite integer of 200 digits, and let B = 10000. After how many unsuccesful iterations
of the Pollard p algorithm we can conclude that probably n has no factor < B?

Let n = p- g be an integer, product of two primes p < q.

(a) Estimate the variation in the amount of calculations to factor n with Pollard p, when the smallest
factor p increases by one digit and g remains the same.

(b) Estimate the variation in the amount of calculations to factor n with Pollard p, when the smallest
factor p remains the same and ¢ increases by one digit.

(c¢) Do some experiments with PARI/GP (use pollard2(n)) and time them).

(a) (use pollard2(n)) Factor the number n = 2107971466920603317676768413248655563326842644339.

(b) Run the algorithm several times: observe that the initial point changes, while the number of iterates
which produce a given factor remains more or less of the same size.

Using the Pollard p algorithm,
(a) factor the Mersenne numbers M,, = 2" — 1 per 1 < n < 20;
(b) factor the Fermat numbers F,, = 22" 4+ 1, per 1 <n<8.

. Factor completely the integers (combine the Pollard p algorithm with the Miller-Rabin test):

ny = 1077471755063687
ng = 10687643000000395442791
ng = 1000587688300000000000000000000000008574912503519308271870011

ng4 = 10760671013000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00824221115473495059110442157250483.

ns = 10000076067099100000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
007659628141113788389728281238427868281.



