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• An algorithm is a sequence of steps which, starting from an input, produces an output.

• It is important to estimate the complexity (“running time”) of an algorithm, namely the amount
of bit operations which produce the output, in terms of the size of the input. This estimate only
depends on the algorithm and not on the computer used to run it. Generally we are interested in
the asymptotic behaviour of the complexity when the size of the input “goes to infinity”.

• In our context the input generally consists of positive integers n1, . . . , ns. The size of a positive
integer n is measured by the number of bits of its binary expansion akak−1 . . . a0, which is given
approximately by log n := log2 n. In fact, one has

2k ≤ n = 2kak + . . .+ 2a1 + a0 ≤ 2k+1, aj ∈ {0, 1}, ak 6= 0,

from which it follows that
k ≤ log n ≤ k + 1.

The number of bits of n is about 3 times the number of decimal digits of n: log2 n ∼ 3 log10 n.

• An algorithm is polynomial time if the complexity is bounded by a polynomial function in the size
of the input, i.e. it is O(log na11 · . . . · log nass ), for some fixed aj ∈ N (independent of n1, . . . , ns); it
is exponential time if the complexity is O(na11 · . . . · nass ), for some fixed aj > 0; it is subexponential
time if the complexity is o(na11 · . . . · nass ). An example is O(2(logn1)

α1 · . . . · 2(logns)αs ), for some
fixed 0 < αj < 1.

• The crucial difference between polynomial and exponential algorithms is the following. Suppose
the input is a positive integer n. In a polynomial time algorithm, if we double the size of the input,
then the amount of calculations to obtain the output is multiplied by a constant factor, independent
of the size of the input. For example, if the complexity is O((log n)k), then

(2 log n)k = 2k(log n)k.

in an exponential time algorithm, if we double the size of the input, then the amount of calculations
is multiplied by factor which is exponential in the size of the input. For example, if the complexity
is O(2k logn), for k ∈ N≥1, then

2k 2 logn = 2k logn · 2k logn.

Consequently, the amount of calculations explodes, when log n→∞.

• The algorithms which we describe involve mainly arithmetic operations in Z or in Zn.

Example 1. The complexity of the arithmetic operations in Z is polynomial in the size of the
input. Let n,m ∈ N, with n ≥ m > 0. Let akak−1 . . . a0 and bhbh−1 . . . b0 be the binary expansions
of n and m, respectively. Then

(a) n±m O(log n+ logm) = O(log n);

(b) n ·m O(log n logm) = O((log n)2);

(c) n : m O(log n logm) = O((log n)2);
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Proof: (a) The sum n+m
akak−1 . . . . . . a0+

bhbh−1 . . . b0

is obtained by logm sums and at most log n carryings (we sum the bits by the rules 0 + 0 = 0,
1 + 0 = 0 + 1 = 1 and 1 + 1 = 10). Hence it has complexity O(log n + logm) = O(log n). The
opposite −n is obtained by switching 0’s and 1’s in the binary expansion of n and then adding 1, and
difference n−m is obtained summing n and −m. Consequently, both −n and n−m are O(log n).

(b) The product n ·m
akak−1 . . . . . . a0×

bhbh−1 . . . b0 =

−−−−−−−−−−−−
lklk−1 . . . . . . l0

mkmk−1 . . . . . .m0−
. . . . . . . . . . . . . . . . . .− −

is obtained by adding logm strips of length log n, each shifted by one place to the left (each strip
either coincides with akak−1 . . . . . . a0 or it consists of 0’s). Hence the complexity of the product is

O(log n · logm) = O((log n)2).

(c) If n = mq + r, the quotient q = cpcp−1 . . . c0 is obtained by log q subtractions

akak−1 . . . . . . a1a0 : bhbh−1 . . . b0 = cpcp−1 . . .

bhbh−1 . . . b0

. . . . . .

bhbh−1 . . . b0

. . . . . .

Since log q ≤ log n and logm ≤ log n, the complexity of the division is

O(log q(log n+ logm)) = O(log n logm) = O((log n)2).

Example 2. The complexity of the Euclidean algorithm to compute the gcd(n,m), with n ≥ m > 0,
is O((log n)3).

Proof: Let n ≥ m > 0 be positive integers. The Euclidean algorithm consists of a sequence of
divisions with remainder:

m = r0

n = q0m+ r1, 0 < r1 < m

r0 = q1r1 + r2, 0 < r2 < r1

r1 = q2r2 + r3, 0 < r3 < r2

... =
...

rk−1 = qkrk + rk+1, 0 < rk+1 < rk

... =
...
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The remainders form a decreasing sequence of non negative integers

0 ≤ . . . rk+1 < rk < rk−1 < . . . r1 < r0 = m,

whose smallest positive element is the greatest common divisor gcd(n,m).

The first division requires about log n logm operations, the second logm log r1, etc . . . Each division
requires at most log n logm operations. It remains to estimate how many divisions are necessary
to obtain gcd(n,m).

Lemma. Every two steps the remainder is cut in half: rk+2 ≤ 1
2rk.

Proof: If rk+1 ≤ 1
2rk, then automatically rk+2 < rk+1 ≤ 1

2rk holds true. Suppose now that
rk+1 >

1
2rk. From the equation rk = qk+1rk+1 + rk+2 one deduces that qk+1 = 1. Then from

rk = rk+1 + rk+2 >
1
2rk + rk+2, it follows that rk+2 ≤ 1

2rk, as claimed.

The above lemma is very important. It implies that gcd(n,m) is obtained by at most 2 logm
divisions with remainder. Consequently the complexity of the Euclidean algorithm can be estimated
as

O(2 logm · log n logm) = O((log n)3).

Remark. If the remainders were only decreasing by one unit at each step, then it would take
m = 2logm divisions to obtain gcd(n,m). In that case, the complexity of the algorithm would be
exponential in logm.

Example 3. The complexity of the arithmetic operations in Zn is polynomial in log n, for any
input x, y in Zn.

(a) x± y O(log n);

(b) x · y O((log n)2);

(c) x−1 O((log n)3).

Proof: (a) and (b) follow directly from Example 1.

(c) For computing x−1 in Zn, one uses the extended Euclidean algorithm, which both checks that
gcd(x, n) = 1, i.e. that x is invertible modulo n, and produces integers a and b satisfying ax+bn = 1.
Then a ≡ x−1 modn is the required inverse. With some work..., one can check that |a| ≤ n, which
implies that computing the residue class of a modulo n is O((log n)2). In total, the complexity of
determining x−1 in Zn is

O((log n)3) +O((log n)2) = O((log n)3).

Example 4. (computing powers by successive squarings, in Z and in Zn).
(a) Let x, a ∈ N. The complexity of computing xa in Z is exponential in log a.

(b) The complexity of computing xa in Zn is given by

O(log a (log x)2 ).

Hence it is polynomial both in log x and log a.

Proof. (a) The size of the power xa is

log xa = a log x.
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Writing down the output is already exponential in log a. This gives a lower bound for the complexity
of the whole calculation, which is therefore exponential in log a.

To prove (b), we describe an efficient method of computing exponentiations in Zn. Let

a = 2hah + . . .+ 2a1 + a0, with aj ∈ {0, 1}, ah 6= 0,

be the binary expansion of the exponent, where h is approximately log a. Then

xa = xah2
h+ah−12

h−1+...+a12+a0 =

h∏
i=0,ai 6=0

x2
i

.

Since x2
i

= x2
i−1 ·x2i−1

, all the powers up to x2
h

are obtained by h successive squarings modulo n

x2 = x · x modn, x2
2

= x2 · x2 modn, . . . , x2
h

= x2
h−1

· x2
h−1

modn.

Since each squaring modulo n isO((log n)2), the complexity of the above computation isO(log a(log n)2).
Multiplying all of the powers together is O(log a(log n)2). Consequently, the whole process has com-
plexity

O(log a(log n)2 + log a(log n)2) = O(log a(log n)2),

and it is polynomial both in log x and in log a.
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The trial division or “naif” factoring algorithm.

Let n ∈ N be a composite number. Then n has at least a prime factor p ≤
√
n. The trial division

factoring algorithm consists of dividing n by all the primes s ≤
√
n, until the smallest prime factor

p is found (assuming that the list of primes up to
√
n is already available).

By the Prime Number Theorem, π(p), the number of primes ≤ p, can be approximated
with p

ln p . To obtain the smallest prime factor p of n, it takes p
ln p divisions with remainder n : s,

for s ≤ p. Then the complexity of this algorithm can be estimated as

O(
p

ln p
log n log p) = O(p log n) = O(2log p log n).

Hence, it is exponential in log p, where p is the smallest factor.

Example 5. Let n = p ∗ q be the product of two primes p and q, with p� q. The above formulas
show that if p is increased by one digit, then the complexity is multiplied by a factor of 10. In the ta-
ble below n is the product of the 40 digits prime q = 10000000000000987879798796876876876088107
and a prime p of 2, 3, . . ., up to 19 digits.

If it takes about 17.000 milliseconds to find p of 9 digits (on a laptop), then to find p of 19 digits it
is likely to take more than 5 years. On the other hand, if we fix the smallest prime p and increase
the larger prime q by one digit, then the running time remains almost the same.

5



The Pollard ρ factoring algorithm.

The Pollard ρ factoring algorithm was introduced by John M. Pollard in 1975. In 1980 a variation
of this algorithm was successfully used by R.P. Brent and J.M. Pollard to factor the 78-digit Fermat
number F8 = 22

8

+ 1 = 2256 + 1

F8 = 1238926361552897 · p62.

The Pollard ρ algorithm is based on the birthday paradox and it is very efficient in determining
the small factors of a given number.

The birthday paradox. Let X be a set with N elements. Pick a random element from X. If
this action is repeated k times, then the probability p(k) that some element is picked twice can be
estimated as

p(k) > 1− e−k(k−1)/2N .

Proof. The probability p(k) that some element is picked twice is given by

p(k) = 1− N(N − 1) . . . (N − k + 1)

Nk
= 1− (1− 1

N
) · . . . · (1− k − 1

N
) = 1−

k−1∏
i=1

(1− i

N
).

From the inequality 1− x < e−x, for x 6= 0, one has

k−1∏
i=1

(1− i

N
) <

k−1∏
i=1

e−
i
N = e−

∑k−1

i=1

i
N = e−k(k−1)/2N ,

from which the required estimate follows

p(k) > 1− e−k(k−1)/2N .

Remark. In particular, one obtains the estimates

p(k) >
1

2
, for k > 1, 177

√
N ; p(k) > 1− e−5 ∼ 0.9932, for k > 3, 16

√
N.

In short, we may say that if we pick an element out of a set of N elements k times, then there is a
positive probability to pick the same element twice.

Conversely, if we picked k times an element out of a set of a unknown cardinality N and we
always got distinct elements, then N was probably larger than k2.

The birthday example. Let X the set of the days of the year, of cardinality #X = 366. The
above estimates say that in a group of 60 people, the probability that two of them have the same
birthday is p(60) > 1− e−354/73 ∼ 0.9921.

How the birthday paradox is applied to the factorisation of an integer n?

In this case the set X is Zn, the group of residue classes modulo n. Let {xj}kj=1 be a random
sequence of length k in Zn. For every divisor p of n, the sequence descends to a random sequence
in Zp.
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• If p < k2 then, by the birthday paradox, with high probability two elements of the sequence
coincide in Zp. The smaller p is with respect to k2, the more probable is a coincidence to occur
in Zp.

• Even without knowing the factorisation of n, a coincidence in some Zp can be detected by taking

gcd(xi − xj modn, n), i, j = 1, . . . , k.

Indeed, one has gcd(xi − xj modn, n) > 1 if and only if there is a divisor p of n for which xi =
xj mod p. In this way gcd(xi − xj modn, n) will provide a non trivial factor of n. (it is unlikely
that gcd(xi − xj modn, n) = n, unless k �

√
n).

• A crucial idea in the Pollard ρ algorithm is to produce a random sequence in Zn by evaluating
the iterates of some function f :Zn → Zn on a random element x0 ∈ Zn

x1 = f(x0), x2 = f (2)(x0) = f ◦ f(x0), . . . , xk = f (k)(x0) = f ◦ f . . . ◦ f(x0).

Usually the function is f(x) = x2 + 2 modn. Once a coincidence occurs

xa = xb, for some b > a ≥ 1, (∗)

then the sequence becomes periodic of period b − a, describing the letter ρ which gives the name
to the algorithm.

The letter ρ described by the sequence.

• Another crucial idea of the algorithm is the following observation, which reduces the number of
gcd’s to be performed from k2 to k.

Lemma. (Floyd’s trick) If for some 1 ≤ a < b one has

xa ≡ xb mod p,

for some divisor p of n, then there exists a ≤ m ≤ b such that

xm ≡ x2m mod p.
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Dim. Suppose that there exist a and b > a such that xb ≡ xa mod p. From then on the sequence
becomes periodic of period b− a. We claim that there exist a ≤ m ≤ b and s ∈ N for which

m+ s(b− a) = 2m ⇔ m = s(b− a).

Let’s check that s = [ a
(b−a) ] + 1 works. Set m = ([ a

(b−a) ] + 1)(b− a). One has indeed

m = ([
a

(b− a)
] + 1)(b− a) ≥ a

(b− a)
(b− a) = a

m = ([
a

(b− a)
] + 1)(b− a) ≤ (

a

(b− a)
+ 1)(b− a) = b.

As a result, one has

xm ≡ x2m mod p,

as claimed.

• Because of the above Lemma, one may form two parallel sequences

xi = f (i)(x0), and yi = f (2i)(x0),

and take

gcd(xi − yi modn, n), for i = 1, . . . k.

By the birthday paradox this procedure is likely to detect any non trivial factor p of n of size ≤ k2.

• The Pollard ρ algorithm has probabilistic complexity

O(
√
p(log n)3) = O(2

1
2 log p(log n)3).

Indeed, each step of the algorithm consists of three squarings and a subtraction followed by a gcd.
Hence it is

O(3(log n)2 + log n) +O((log n)3) = O((log n)3).

If p is the smallest factor of n, by the birthday paradox, it is probably found by
√
p steps. This is

why the complexity is called probabilistic: finding the factor by the above amount of calculations
is probable, but not guaranteed.

Remark. Without the Floyd’s trick, the Pollard ρ algorithm would be O(p log n), like trial division,
with the disadvantage of being probabilistic, instead of deterministic. The Pollard ρ algorithm is
still exponential in log p, however with a better constant.

Example 6. If we process the same set of integers as in Example 5, we can see the difference in
the performances of the two algorithms.
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Note that the above two tables are not identical: at every attempt different random sequences may
be taken in Zn. This is why the complexity of the algorithm is probabilistic.

Remark. The Pollard ρ algorithm can be also be applied to solve the DLP in a cyclic group G.
In order to apply the birthday paradox one must be able to produce suitable random sequences in
G. For example, if G is the group of points of an elliptic curve over Zp, with p prime, then the
construction of f can be seen in L. Washington’s book on elliptic curves.
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The Pollard p− 1 factoring algorithm.

The Pollard p− 1 algorithm, is a factoring algorithm introduced by John Pollard in 1974. It takes
its name from the fact that it detects the prime factors p of an integer n, with the property that
p − 1 is a smooth number, i.e. it factors into relatively small primes. Note that p − 1 is the order
of the group Z∗p.

Despite its limited probability of success, the Pollard p− 1 algorithm is important because in
Lenstra’s elliptic curve method for factoring (ECM), the same principles are applied to the group
of points of an elliptic curve over Zp.

Integers all of whose prime factors are ≤ B, are called B-smooth. They become very sparse, when
the ratio u = log p/ logB grows.

Let n ∈ N be the integer to be factored. Fix a smoothness bound B ∈ N and define

k :=
∏
p≤B
pα≤B

pα.

We may think of k as “the mother of all B-smooth numbers”, in the sense that heuristically we
may assume that “any” B-smooth number divides k. The Pollard p−1 algorithm consists of taking
a random class a ∈ Z∗n and computing

gcd(ak − 1 modn, n).

When is the above gcd going to be > 1?

Heuristically, we can say that gcd(ak− 1 modn, n) > 1 if and only if n admits some prime factor
p with the property that p− 1 = #Z∗p is B-smooth.

Proof. If p is a prime factor of n with the property that p−1 is B-smooth, then we may assume that
p − 1 divides k. From the Fermat Little Theorem applied to Z∗p, one deduces that ak = 1 mod p

and that p divides gcd(ak − 1 modn, n).
Conversely, if a prime p divides gcd(ak − 1 modn, n), then p is a factor of n and ak = 1 mod p.
This implies that the order of a in Z∗p divides k and therefore it is B-smooth. On the other hand,

in the cyclic group Z∗p, the order of an element is typically given by p−1
r , for some small integer r.

Hence p− 1 is B-smooth.

Remark. If a smoothness bound B is fixed, then the gcd(ak − 1 modn, n) coincides with the
product of all prime factors p of n with the property that p− 1 is B-smooth.

The complexity of the algorithm is dominated by the complexity of the calculation

ak modn,

which is
O(logk(log n)2) = O(B(log n)2),

since the size of k is roughly expB. *

Once a smoothness bound B is fixed, the B-smooth numbers become more and more sparse as
their size grows. Consequently the factors p with the property that p − 1 is B-smooth are rare.

* One has
∏

p≤B,
p prime

p ∼ eB
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If the algorithm fails to find a factor with a given smoothness bound B, the only option is to
increase B. On the other hand, increasing B is very expensive from a computational point of view
(the complexity of the algorithm is exponential in logB). This is why this algorithm has limited
probability of success.

Example 7. Consider n = 11951438413903 and take for example a = 57 ∈ Z∗n.
For B = 50, we get gcd(ak − 1 modn, n) = 1;
for B = 100, we get gcd(ak − 1 modn, n) = 1;
for B = 150, we get gcd(ak − 1 modn, n) = 108769.
Indeed n = p ∗ q, with p = 108769 and q = 109879087, and

p− 1 = 25 · 3 · 11 · 103, q − 1 = 2 · 3 · 29 · 373 · 1693.

Since p− 1 is 150-smooth, while q − 1 is not, the algorithm detected p and not q.

Exercise. In the above example, repeat the procedure with a = 2, 3, 5 ∈ Z∗n.

Exercise. Consider n = p · q = 687442130387521, where p = 686989 and q = 1000659589.
One has p− 1 = 22 · 33 · 6361 and q − 1 = 22 · 3 · 59 · 1413361.
How big should one choose B so that algorithm detects the non-trivial factor p?
What happens if one takes B > 1413361?

Now we apply the same principle of Pollard’s p − 1 algorithm to the group of points of an
“elliptic curve” E over Zn. In this situation the algorithm detects the prime factors p of n for
which the elliptic curve E over Zp has B-smooth order. The next two examples illustrate what can
happen.

Example 9. Let n = 129789496891. The equation

E : Y 2 = X3 +X + 107926713632

has discriminant ∆ ≡ 28709649864 ∈ Z∗n. Hence it defines an elliptic curve over Zn and over Zp,
for every prime divisor p of n. The point P = (111692269326, 48777146469) is on E(Zn). Fix the
smoothness bound B = 50. Then k = 3099044504245996706400.

Computing k · P on E(Zn), we get

k · P = (35973533882, 48777146469) ∈ E(Zn).

We can check that
n = p · q, p = 1297, q = 100069003,

#E(Zp) = 100065626 = 2 · 73 · 685381, #E(Zq) = 1036 = 2 · 653.

Neither E(Zp) nor E(Zq) have B-smooth order. When this is the case, the curve E does not
produce any factor of n.

Example 10. Let n = 129789496891, as in the previous example. The equation

F : Y 2 = X3 +X + 76757924901

has discriminant ∆ ≡ 43794887955 ∈ Z∗n. Hence it defines an elliptic curve over Zn and over Zp,
for every prime divisor p of n. The point Q = (98961650999, 56306439329) is on F (Zn). Fix B
and k as in the previous example. This time, k · Q is the point at infinity on F (Zp) but not on
F (Zq). Indeed, the order of the curve F over Zp is given by #F (Zp) = 1288 = 23 · 7 · 23, which is
B-smooth. On the other hand #F (Zq) = 100085195 = 5 · 72 · 607 · 673 is not B-smooth and k ·Q
is a point on F (Zq), different from the point at infinity.

In practice, this means that when we try to compute k ·Q we encounter an impossible inverse
modulo n: some gcd with n coincides with the factor p of n.
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The Miller-Rabin theorem and the Miller-Rabin primality test.

The Miller-Rabin primality test is a very efficient algorithm to detect whether a positive integer
n ∈ N is composite or possibly prime. It is based on the Miller-Rabin Theorem (MRT in short),
which is a refinement of the Fermat Little Theorem (FLT in short).

Theorem. (Fermat Little Theorem). Let n ∈ N be a prime number and let a be an integer
satisfying gcd(a, n) = 1. Then

an−1 ≡ 1 modn.

The FLT provides a necessary condition for an integer n to be prime: if an−1 6≡ 1 modn, then
we are sure that n is composite. On the other hand, if an−1 ≡ 1 modn, then we cannot conclude
anything about the primality of n. Even worse, there infinitely many composite integers for which
an−1 ≡ 1 modn, for every a with gcd(a, n) = 1. These are the the Carmichael numbers.* The
MRT combines the FLT with the following fact:

Let p be a prime number. If p divides x2 − 1, then either x ≡ 1 mod p or x ≡ −1 mod p.

Theorem. (Miller-Rabin Theorem). Let n ∈ N be a prime number and let a be an integer
satisfying gcd(a, n) = 1. Write n−1 = m2k, for some k, m ∈ N withm odd, and set b := am modn.

Then either b ≡ 1 modn or there is 1 ≤ s ≤ k such that b2
s−1

= −1 modn.

Proof. By FLT one has

an−1 = (am)2
k

≡ 1 modn.

Now we examine how such a power of a can become to 1, modulo n.
One way is that already b := am ≡ 1 modn.
Otherwise, if b := am 6≡ 1 modn, then the power an−1 is obtained from b by successive squarings
modulo n

b2 = b · b, b2
2

= b2 · b2, . . . b2
k

= b2
k−1

· b2
k−1

.

Let s be the smallest positive in integer, 1 ≤ s ≤ k, for which

b2
s

= b2
s−1

· b2
s−1

≡ 1 modn.

Then the element b2
s−1

is a zero of the polynomial X2 − 1. Since n is prime, it follows that either
b2
s−1 ≡ 1 modn or b2

s−1 ≡ −1 modn. Since s is the smallest integer for which b2
s ≡ 1 modn, then

it is necessarily

b2
s−1

≡ −1 modn,

as claimed.

An integer n is called a-pseudoprime, provided that it satisfies the Miller-Rabin theorem for some
class a ∈ Z∗n. Like the FLT, also the MRT only provides a necessary condition for an integer n
to be prime: if an−1 6≡ 1 modn, then n is certainly composite. On the other hand, given an odd
composite integer n > 9, then

#{a ∈ Z∗n | n is a-pseudoprime} ≤ ϕ(n)/4,

* Carmichael numbers are composite integers n which satisfy an−1 ≡ 1 modn, for all a ∈ Z∗n.
They are characterized by Korselt’s criterion: A positive composite integer n is a Carmichael
number if and only if it is square-free, and for all prime divisors p of n, one has p− 1|n− 1.
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where ϕ denotes the Euler ϕ function (for a proof of this fact, see Schoof R., Four primality tests).
This means in particular that if n is a-pseudoprime for k different classes a ∈ Z∗n, the probability

that it is composite is ≤ 1
4k

. This fact combined with the Prime Number Theorem enables one to
determine integers n, with probability of being primes arbitrarily close to 1, in polynomial time.

Example 10. Let n = 825265. As n is a Carmichael number, it passes the FLT test for every
a ∈ Z∗n. Let’s check that it does not pass the MR test. Write n − 1 = 825264 = 51579 · 24, take
13 ∈ Z∗n and compute

13n−1 = 1351579·2
4

= (1351579)2
4

modn.

We find

b = 1351579 ≡ 341942 6≡ 1 modn

Now we compute b2
4

by successive squarings modn

b2 = 3419422 ≡ 786164 6≡ 1
b2

2

= b2 · b2 ≡ 497421 6≡ 1
b2

3

= b2
2 · b22 ≡ 1.

Since b2
2 6≡ −1 modn, then n is not prime. Indeed n = 5 · 7 · 17 · 19 · 73.
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The Baby-Step-Giant-Step algorithm.

The Baby-Step-Giant-Step algorithm was introduced by Dan Shanks in 1969. It can be applied to
solve the discrete logarithm problem in an arbitrary finite cyclic group.

Let G be a cyclic group with n elements, and let a ∈ G be a generator of the group. It means that
G = {a, a2, . . . , an = e}. In particular, every x ∈ G can be written as x = as, for some s ∈ Z.
The exponent s, which by Lagrange’s theorem it is only well defined modulo n, is by definition the
discrete logarithm of x in base a

s := loga(x) modn.

The Baby-Step-Giant-Step algorithm exploits the fact that every element x ∈ G can be written as

x = aj+mi, (1)

for integers m, i, j satisfying m = [
√
n] + 1, and 0 ≤ i, j ≤ m. Equation (1) can be rewritten

as ai = xa−mj . Then the logarithm loga(x) is obtained by comparing two lists: the baby steps ai

and the giant steps xa−mj , for 0 ≤ i, j ≤ m. When a coincidence is found between the two lists,
namely one has ai0 = xa−mj0 for some i0 and j0, then

log(x)a = i0 +mj0.

By the naif method one could possibly have to compute up to p powers modulo p, before obtaining
the desired logarithm. By BSGS, one obtains the desired logarithm by computing at most 2m ∼
2
√
p powers modulo p, one inverse modulo p, and by comparing two lists of length at most m. In

total, the complexity of BSGS in Z∗p is

O(
√
p(log p)3).

Example 11. Fix p = 433 and let a = 7 be a primitive root in Z∗p. We want to calculate the

discrete logarithm of x = 166 in base a. In this case, m = 21 = [
√

433] + 1.
We first produce the list of the Baby-Steps:

ai mod p, for 0 ≤ i ≤ m

a0 ≡ 1
a1 ≡ 7
a2 ≡ 49
a3 ≡ 343
a4 ≡ 236
a5 ≡ 353
a6 ≡ 306
a7 ≡ 410
a8 ≡ 272
a9 ≡ 172
a10 ≡ 338
a11 ≡ 201
a12 ≡ 108
a13 ≡ 323
a14 ≡ 96
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a15 ≡ 239
a16 ≡ 374
a17 ≡ 20
a18 ≡ 140
a19 ≡ 114
a20 ≡ 365
a21 ≡ 390

a−m ≡ a−21 ≡ 292

Next we produce the list of the Giant-Steps:

xa−mj mod p, for 0 ≤ j ≤ m

and each time we check whether the value the new Giant-Step already appears in the list of the
Baby-Steps. When that is the case, we are done.

x · a0 ≡ 166
x · a−21 ≡ 409
x · a−42 ≡ 353 !!!

We found a coincidence: a5 ≡ x · a−42. This means that

x ≡ a5+42 ≡ a47 and log7(166) ≡ 47 mod 432.

Indeed one can check that 747 ≡ 166 mod 433.

Example 12. Baby Step Giant Step on an elliptic curve. Let p = 101. The equation

E : Y 2 = X3 +X + 55

defines an elliptic curve over Zp, of prime order #E(Zp) = 109. Consequently the group (E(Zp),+)
is cyclic and every point different from∞ is a generator. For example, we fix P = (60, 51) ∈ E(Zp).

Now let Q = (62, 40) ∈ E(Zp). Then the logarithm logP (Q) of Q in base P is by definition
the integer k mod 109 such that

Q = k · P.

In this case, m = [
√

109] + 1 = 11
We first produce the list of the Baby-Steps:

iP, for 0 ≤ i ≤ m.

∞
P = (60, 51)
2P = (17, 95)
3P = (5, 36)
4P = (92, 78)
5P = (66, 26)
6P = (12, 52)
7P = (13, 89)
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8P = (49, 54)
9P = (48, 10)
10P = (18, 42)
11P = (72, 33)

−11P = (72, 68)

Next we produce the list of the Giant-Steps:

Q− 11jP, for 0 ≤ j ≤ m− 1

and each time we check whether the value the new Giant-Step already appears in the list of the
Baby-Steps. When that is the case, we are done.

Q = (62, 40)
Q− 11P = (92, 78)

Since 4P = Q− 11P , we obtain the desired logarithm

logP (Q) = 15 mod 109.

One can check that 15P = Q in E(Zp).

The Pohlig-Hellman algorithm.

Let G be a cyclic group of order N and suppose that N =
∏
i q
ei
i is the product of small distinct

primes qi, for i = 1, . . . , s. Then G ∼= G1 × . . .×Gs, with

#Gi = qeii and Gi ∼= Zqei
i
.

By the Chinese Remainder Theorem the discrete logarithm problem in G can be reduced to the
discrete problem in the smaller groups Gi. Hence the essential case is G = Zqe , for q odd prime
and e ≥ 1.

Let P be a generator of G and let Q be a given element. Then Q = kP , for some integer
k mod qe. We want to determine k, which by definition is the discrete logarithm of Q in base P .
Recall that the subgroups of G are linearly ordered

0 = qeG ⊂ qe−1G ⊂ . . . ⊂ qG ⊂ G,
where qmG is the qe−m-torsion subgroup, for m = 0, 1, . . . , e.

The Pohlig-Hellman algorithm provides a method to solve the DLP in G. Write k in base q,
as k = k0 + k1q + . . .+ ksq

s, for kj ∈ {0, . . . , qe − 1}. Then

Q = kP = k0P + k1qP + . . .+ ksq
sP, (∗)

where the summand kmq
mP is an element in the qe−m-torsion subgroup of G, for m = 0, 1, . . . , e.

In order to determine the coefficients km, we precompute the elements of the q-torsion

T = {0, qe−1P, . . . , (q − 1)qe−1P}.
By multiplying both terms of the equation (∗) by qe−1 we get

qe−1Q = k0q
e−1P,

which is an element in the q-torsion T . By comparing it with the elements of T , we determine k0.
In general, once we have determined k0, . . . , kj−1, we obtain kj as follows: we multiply both terms
of the equation

Q− k0P − . . .− kj−1qj−1P = kjq
jP + . . .+ ksq

sP

by qe−j−1. The only surviving element on the right hand side is kjq
e−1P . By comparing it with

the elements of T , we determine kj .
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Index calculus.

Index calculus is an algorithm for solving the discrete logarithm problem in Z∗p, for p prime. Before
explaining it, we start with an example.

Example 13. Let p = 13. Then Z∗13 is a cyclic group of order 12 and a = 2 is a generator. We
want to compute log2 5, which is an integer modulo 12. We already know

log2 2 ≡ 1, log2 1 ≡ 0, log(−1) =
p− 1

2
≡ 6 mod 12.

From the relations mod 13

−1 ≡ 12 ≡ 22 · 3, 1 ≡ 14 ≡ 2 · 7, 2 ≡ 15 ≡ 3 · 5,

we obtain the following linear relations among the respective logarithms modulo 12 (in any base a)

log(−1) ≡ 2 log 2 + log 3, log 1 ≡ log 2 + log 7, log 2 ≡ log 3 + log 5.

For a = 2, we obtain the following linear system with coefficients in Z12{
log 3 ≡ 4
log 7 ≡ −1
log 3 + log 5 ≡ 1

and
log2 5 = 1− 4 ≡ −3 ≡ 9 mod 12.

One can check that 29 ≡ 5 mod 13.

The Index calculus is a method which follows the same steps of the above example, in a systematic
way. Let p be a prime and let a be a generator of Z∗p. Fix a positive integer B and set F := {s ≤
B, s prime}, the factor base. Let α := #F . Suppose we want to compute

loga x, for some x ∈ Z∗p.

• The first step of the algorithm consists of determining the logarithms of all the primes in F . We
produce random powers of the primes in F

se11 · . . . · seαα .

Every time that the residue class of one such power modulo p factors in the primes of the factor
base, i.e.

se11 · . . . · seαα ≡ s
f1
1 · . . . · sfαα mod p,

we obtain a linear relation among the respective logarithms modulo p − 1, with respect to any
base a. With enough linear relations, we will be able to determine the logarithms

loga s1, . . . loga sα.

• The second step consists of using the relations obtained in the first step to determine the loga x.
We multiply x by random powers of the primes in F

xse11 · . . . · seαα .
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If the residue class of one such product modulo p factors in the primes of the factor base, i.e.

xse11 · . . . · seαα ≡ s
f1
1 · . . . · sfαα mod p,

then
loga x ≡ (f1 − e1) loga s1 + . . .+ (fα − eα) loga sα mod p− 1.

The complexity of this algorithm mainly depends on the distribution of the B-smooth numbers as
a function of the ratio log p/ logB. Here we just say that it is subexponential in log p.

Example 14. Let p = 179 prime. Then Z∗p is a cyclic group of order 178. Generators of Z∗p are
for example a = 2 and a = 11. Fix B = 7. Then F = {2, 3, 5, 7}. We want to calculate

log11 13.

In the first step we determine

loga 2, loga 3, loga 5, loga 7.

Suppose we have determined the following relations mod p

22 · 32 · 5 ≡ 1, 23 · 52 ≡ 3 · 7 25 · 7 ≡ 32 · 5

34 ≡ 57, 3 · 72 ≡ 712.

Then by taking logarithms, we obtain the linear relations modulo p − 1 = 178 (indepent of the
choice of a generator of Z∗p) 

2 log 2 + 2 log 3 + log 5 ≡ 0
3 log 2− log 3 + 2 log 5− log 7 ≡ 0
5 log 2− 2 log 3− log 5 + log 7 ≡ 0
4 log 3− 7 log 5 ≡ 0
log 3− 10 log 7 ≡ 0.

If we take a = 2, then log2 2 = 1 and the subset of equations
2 log2 3 + log2 5 ≡ −2
− log2 3 + 2 log2 5− log 7 ≡ −3
−2 log2 3− log2 5 + log 7 ≡ −5

is already sufficient to obtain

log2 2 ≡ 1, log2 3 ≡ 108, log2 5 ≡ 138, log2 7 = 171 mod 178.

In solving the equations, one should remember that Z178 is not a field, and some coefficients may
not be invertible modulo 178. Next we compute log2 13. From the relation

13 · 2 · 7 ≡ 3 mod 179,

we have
log2 13 = − log2 2− log2 7 + log2 3 ≡ 114 mod 178.

Similarly, form
11 · 24 ≡ −3 mod 179,

we get
log2 11 = −4 log2 2 + log2(−1) + log2 3 ≡ 15 mod 178.

Finally
log11 13 = 114 · 15−1 ≡ 114 · 95 ≡ 150 mod 178.
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