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Geometry of Biinvariant Subsets of
Complex Semisimple Lie Groups

GREGOR FELS - LAURA GEATTI

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI (1998),

Introduction

Let G be a complex semisimple Lie group and let G~ be a real form
of G. In this paper we investigate the CR-geometry of the G~ x GJR-action
on G given by left and right translations, i. e. x H gx h -1. In particular, we
wish to obtain information about the G~ x G R -invariant objects in G such as
plurisubharmonic functions and domains. The motivation for this study comes
from representation theory. One of the problems in representation theory is
to construct geometric realizations of the irreducible unitary representations of
a semisimple Lie group, possibly on natural spaces of holomorphic functions.
In this context, there is a strong interplay between representation theory and
complex analysis.

If G~ is a compact Lie group, every irreducible representation of G~ x G~
can be canonically realized in the Hilbert space of square summable
functions on G~. All such representations are finite dimensional and are

parametrized by the positive characters on a fixed Cartan subgroup. The fact
that all irreducible representations of G~ extend holomorphically to the univer-
sal complexification G yields a natural realization of such representations on
spaces of holomorphic functions on G.

The situation is more complicated when the group G~ is non-compact. In

this case, all unitary representations of G~ are infinite dimensional and do not
extend to holomorphic representations of the group G. Moreover, there may
be several non-conjugate Cartan subgroups in G~, each of them
associated with a series of irreducible unitary representations of G~.

In the late seventies, Gelfand and Gindikin outlined a program for the

holomorphic realization of representations by considering certain biinvariant do-
mains in G. The idea was to realize some unitary representations of G~ either
on Hilbert spaces of holomorphic functions on these domains or on their co-
homology classes (cf. [GG]). Such domains are contained in the subsets of the
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form

where t~ varies in the conjugacy classes of Cartan subalgebras Lie(G~).
When the group G~ is Hermitian and t~ C is a compact Cartan subalgebra,
the set GJR.exp itJR.GJR contains some natural biinvariant domains: the Ol’shanskii
semigroups. Ol’shanskii semigroups are subsets of G of the form

where V is an Ad(GJR)-invariant cone in gR and v is a Weyl-invariant cone
in t~ . The domains S~ are in many respects the non-commutative analogue
of tube domains in complex Euclidean space. Every such domain contains
the group G~ in its Shilov boundary and the space of holomorphic functions
O(Sv) on Sv contains a Hardy-type Hilbert space H(Sv), where the group G R
acts by a unitary representation. Moreover, the boundary value operator defines
an isometric injection of into All the representations of the
holomorphic discrete series of G~ can be realized in this way (see [O 1 ], [02],
[St], [HN]).

If G~ is a compact real form of G and t~ is an arbitrary Cartan subalgebra
of gJR, then t~ contains no proper Weyl-invariant cones and

It was proved by Loeb [Ll ] that in this case there is a one-to-one correspondence
between biinvariant plurisubharmonic functions on G and logarithmically convex
Weyl-invariant functions on exp i tR (see also [Las], [FH]). Generalizing Loeb’s
idea, Neeb used the theory of holomorphic representations of complex semi-
groups to obtain a similar result for a non-compact Hermitian real form G~ of G.
In [Nl], [N2], he established a one-to-one correspondence between biinvariant
plurisubharmonic functions on biinvariant subsets of Ol’shanskii semigroups

and logarithmically convex Weyl-invariant functions on Q n exp i 0 satisfying a
certain growing condition. Recall that, on the other hand, on a complex simple
Lie group G there are no non-constant global plurisubharmonic functions which
are biinvariant under a non-compact real form G~ (see [L2]).

Very little is known about the complex geometry of biinvariant objects in
the subsets

when t~ is a non-compact Cartan subalgebra in One would expect biinvariant
subsets related to non-conjugate Cartan subalgebras to have different geometric
properties.

In this paper, we approach these problems by investigating the CR-structure
and the Levi form of the generic G~ x G~-orbits in G. There is a finite number
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of orbit types in G, of maximal dimension, whose union forms an open dense
subset of G (see [Br], [St]). Orbits of these types will be called generic orbits.
Our main results comprise the calculation of the Levi form of an arbitrary generic
orbit S in terms of the root system of g = Lie(G) and the determination of
the corresponding "Levi cone" (cf. Proposition 4.26, Theorem 5.3). Roughly
speaking, the shape of this cone determines how smooth CR-functions defined
on S locally extend to holomorphic functions on an open subset in G. Our
calculations enable us to determine which generic orbits can be contained in
the level sets of a biinvariant plurisubharmonic function or in the boundary of
a biinvariant Stein domain in G.

If G~ is simple, generic orbits with the above properties only occur when
contains a compact Cartan subalgebra tg. In the subset exp i g C G,

they are precisely the generic orbits lying in

In other words, a biinvariant domain

possibly admits biinvariant plurisubharmonic functions or Stein subdomains only
when it is completely contained in G R - exp i4. GR. Examples of such domains
Q are the Ol’shanskii semigroups.

The paper is organized as follows. In Section 1, we recall the basic notions
about CR-structures and Levi form; in Section 2, we recall some general facts
about group actions, Cartan subalgebras and Bremingan’s description of the
generic G~ x G~-orbits in G; in Section 3, we determine the invariant CR-
structure of a generic orbit; in Section 4, we calculate its Levi form; in Section 5,
we describe its Levi cone and derive some consequences.

Acknowledgment. Part of this work was done while the authors were guests
of the Mathematisches Forschungsinstitut in Oberwolfach, within the "Research
in Pairs" program. We wish to thank the Institute for providing us with very
pleasant working conditions. We also thank Ralph Bremigan for his useful
remarks.

1. - CR-structures and Levi form

Generalities about CR-structures. Let M be a complex manifold with tangent
bundle T M and let J : T M -~ TM denote the complex structure. Let T~M :=
T M ©R C denote the formal complexification of TM. Then J extends to a

C-linear morphism of T‘~ M and induces the decomposition
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into the holomorphic and antiholomorphic tangent bundles of M. The bundles
H M and AM are by definition the +I-eigenspaces of J on T~M respectively.
The complex conjugation

defines a C-antilinear bundle isomorphism - : HM - AM. The map X H
X ® 1 defines a canonical embedding T M ~ T~M identifying T M with
the real part of T~M with respect to the complex conjugation, i.e. T M is
characterized by

The bundle maps 7r H : TM - H M given by X ~ and 7r A :
T M ~ AM given by X H 2 (X + i JX ) define R-isomorphisms satisfying
.7r H(jX) = i.7rH(X) and 7r A(jX) = -i7rA(X) respectively.

Let S be a real submanifold of M with tangent bundle T S. In general,
the subbundle T S C T M is not J-stable. Let x E S. Denote by

the maximal J-stable subspace of the tangent space to S at x. If the

complex dimension d of TcSx does not depend on x, then S is a CR-manifold
and d is called the CR-dimension of S. Moreover, = is a

well-defined J-stable subbundle of TS.

DEFINITION 1.2. A CR-manifold S c M is called generic if the CR-
dimension d of S is the smallest possible, i.e. d = dimcm - codiMR(S, M)
(here codiMR(S, M) denotes the real codimension of S in M).

The vector bundles TCS and T S can be formally complexified as well. The
decomposition (1.1) induces a decomposition of TCCS as

where H S = TCS n H M and A S = TS n AM. Denote by r ( M, E ) the space
of sections of a vector bundle E 2013~ M over a manifold M. A CR-submanifold
S of a complex manifold is involutive, i.e.

This condition implies that

and

for all local sections X, Y E r(S, Observe that the condition

is much stronger than (1.4); if condition (1.6) is fulfilled for TCS, there is a

foliation of S by complex submanifolds of complex dimension d.
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The Levi form. Let S be a CR-submanifold of a complex manifold M. We
recall the definition of the Levi form of S. For more details we refer to [Bo],
[Gr], or [Tu]. 

_

Let x E S. Denote by Zx a tangent vector in and by Z an arbitrary
extension of Zx to a local section in r ~S, Then the vector fields 7rH
~(Z - iJZ) and 7r A (2) ~(Z + i J Z) are local sections of the bundles H S
and AS.

DEFINITION 1.7. The levi form L of S at x is the map L : x Tcsx -
given by

REMARK 1.8. The Levi form L at x is well-defined, as it does not depend on
the choice of the extensions X and Y. Moreover, L is an R-bilinear Hermitian
form satisfying

and

where the conjugation on is the restriction of the conjugation on
TCMx. It follows that L(Xx, Xx), is real valued, i.e. L(Xx, Xx) E TSxITcSx.
From (1.5), it follows that

for all Xx, Yx E 
The Levi form measures the degree to which condition (1.6) fails to be

satisfied. The Levi form L defined in 1.7 is a generalization of the classical
Levi form of a real hypersurface S which is locally defined by ak 
function p. A key geometric object associated with the Levi form is the real
cone Cx (S) generated by the image of L in T S, / Tc S,. The cone cx (S) is the

higher codimensional analogue of the signature of the classical Levi form. It

will be referred to as the "Levi cone" of S at x.

DEFINITION 1.10. Let S be a CR-manifold in M and let X E S. The Levi
cone Cx (S) of S at x is defined by

Observe that is a real cone which may have an empty interior. The

cone Cx (S) governs the holomorphic extension of CR-functions defined on a
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neighborhood of x in S. In this regard, we mention a theorem which will be
applied in Section 5 (cf. [Bo], p. 202).

THEOREM 1. 11. Let S be a generic CR-submanifold of a complex manifold M
and let x E S. Assume that the Levi cone at x satisfies the condition

Then, for each neighborhood w of x in S there exists a neighborhood S2 of x in M
satisfying S2 c w and with the property that every CR-function of class C 1 on
SZ n S extends to a unique holomorphic function on Q.

2. - Generic orbits in G

Preliminaries. In this section we give a precise definition and a parametrization
of the generic G~ x G~-orbits in G (see [Br] and [St]). We first need some
preparation.

Let g be a complex semisimple Lie algebra. A real subalgebra 9 R c 0
is a real form of g if there exists an involutive antiholomorphic automorphism
K : 9 --~ 0 such that

Let J denote the complex structure of g. Then

The automorphism K is referred to as the conjugation of g with respect to g~.
Let G be a connected complex semisimple Lie group with Lie algebra g. A
real form G~ c G is a Lie group whose Lie algebra is a real form of g. If

the complex Lie group G is not simply connected, the conjugation K of g may
not induce an antiholomorphic automorphism of G (see [Ra]). To overcome

this technical difficulty, we assume for the moment G to be simply connected
and denote by K the corresponding automorphism of G as well. Under this

assumption, the fixed point set of K in G is connected and

The group G~ x G~ acts on G by left and right translations

By definition, biinvariant sets and functions on G are those which are invariant
under this action.
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Denote by Y the K-stable "complement" of G~ in G

The set Y is a closed real algebraic subset of G which is invariant under the
adjoint action of G~. Consider the map

Then il has the following properties:
is equivariant, i.e. il(gxh-1) = gil(x)g-1, for all g, h E In particular,

q maps GR x GR-orbits in G into Ad(GJR)-orbits in Y.
(ii) 17 (x) = il (y) if and only if x = yg, for some g E G~. In other words,

q maps distinct G~ x G~-orbits in G into distinct Ad(G~)-orbits in Y,
inducing an injective map G / GIR. ’4 Y.

(iii) For y E Y, one has that 17(y) = y2.
In general, Y consists of several irreducible components; the image of 17

is contained in the same component Yo as 

REMARK 2.4. If GR is a compact real form of G, then Yo = exp J gJR and
G = GJR. Y° is just the polar decomposition of G. If G~ is a non-compact real
form, the set G~ ~ Y may have a non-empty complement in G. This happens
for example when G~ = SL(2, R) and G = SL(2, C). However, the interior of
G~ ~ Y° contains the group G~ as the G~ x G~-orbit of the identity element.
For this reason, from a representation theory point of view, the most interesting
biinvariant domains of G are those which are contained in G R . Y° (see [GG]).

Cartan subalgebras and Weyl groups. Cartan subalgebras in g~ play a major
role in the description of the generic G~ x G~-orbits in G. Recall that in a
real semisimple Lie algebra there may be several, though finitely many, non-
conjugate Cartan subalgebras. For a Cartan subalgebra e C gJR, define

tR = { X E e I Adx has purely imaginary eigenvalues

and

t~ = {X I Adx has real eigenvalues}.

Then t~ = The complexification t of t~ is a K-stable Cartan subalgebra
of g. Let ð(t) denote the root system of g with respect to t and let

be the corresponding root decomposition. Since t is K-stable, the subspace Q)0a
is K-stable as well.
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Denote by NG (t) and ZG (t) the normalizer and the centralizer of t in G
respectively. ZG (t) is also referred to as the Cartan subgroup corresponding to
t and denoted by T. The complex Weyl group of t in G is defined by

Both ZG (t) and NG (t) are stable under the conjugation K. Hence there is an
induced conjugation k on WG(t). Define

Then is the subgroup of consisting of the elements w which
commute with K as linear automorphisms of t. Finally, denote by NGR (t~) and
ZGR the normalizer and the centralizer of in GJR. The group ZGR 
G~ n T is also referred to as the Cartan subgroup corresponding to t~ and
denoted by The real Weyl group of t~ is defined by

Each of above Weyl groups is finite and the following inclusions hold:

Recall that every two complex Cartan subalgebras are conjugate in g and there-
fore have the same dimension r. The rank of G is by definition equal to r.

Regular elements and generic orbits. For an arbitrary smooth action of a non-
compact Lie group on a manifold, there is not an obvious notion of "principal
orbit". However, in the case of the G~ x G~-action on G defined in (2.1 ),
there exists a finite number of orbit types with the following properties: orbits

of these types are closed, all have the same maximal dimension, and their union is
an open dense subset in G. Orbits of these types will be referred to as generic
orbits.

Before we state Bremigan’s description of the generic orbits, we recall the
different notions of regularity in a semisimple Lie group G (see [Hu]). We
denote by ZG (x ) the centralizer of an element x in G.

DEFINITION 2.8. An element x E G is regular if the dimension of ZG(x)
is equal to the rank of G.

DEFINITION 2.9. An element x E G is strongly regular if ZG(x) is a Cartan
subgroup of G. Strongly regular elements in G are denoted by G’.

REMARK 2. lo . Strongly regular (respectively regular) elements form an open
dense subset of G which is invariant under the adjoint action of G, but which is
not invariant under the G~ x G~-action. In general, there exist non-semisimple
regular elements in G. If G is simply connected, the strongly regular elements
coincide with the regular semisimple elements.
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The following notion of regularity, which involves the conjugation associ-
ated to G~, characterizes the elements of G which lie on generic G~ x G~-orbits
(see [Br]).

DEFINITION 2.11. An element x E G is said to be regular with respect to K
if q (x) = e Y is strongly regular. Regular elements with respect to K
are denoted by Greg, .

The regularity with respect to K is different from the strong regularity
defined in 2.9. In contrast to G’, the set Greg,K is biinvariant (cf. (2.3)-i).

DEFINITION 2.12. A G~ x GJR-orbit S in G is called generic if it is contained
in Greg,K or, equivalently, if is strongly regular for every XES.

The following theorem, due to Bremigan [Br], gives a complete descrip-
tion of the regular elements with respect to K in G. In particular, it gives a
parametrization of the generic G~ x G~-orbits in G. Related results are also
contained in [MO] and [St].

THEOREM 2.13 [Br]. Let G be a complex semisimple simply-connected Lie
group and let GR C G be a real form. Let tR, ... , tR be a maximal set of non-
conjugate Cartan subalgebras in Let {nl }l, C = 1,..., m, be a
complete set of representatives of the double cosets in B 

(i) The elements {~~)~7 can be chosen so that

and

(ii) The set Greg,K decomposes as the disjoint union

Each subset (ni 1 exp Jtr n Greg,K) . GJR consists of a finite number of
connected components. Furthermore, Greg,K is an open and dense subset of G.

(iii) Every generic GJR x G R -orbit in G intersects one of the sets ni exp J tr in a
finite number of points.

Observe that the subsets GJR.exp are contained in joR, while
the subsets GJR. njexpJO, GJR are contained in the complement of exp J gJR
in G, whenever the element [nj ~ [e] in B WK(tr)1 

In order to compute the dimension of the generic orbits, we determine the
isotropy subgroup in GJR x G R of an arbitrary point Xo E G. We denote it

by Ixo ’
LEMMA 2.14. Let Xo E G. The isotropy subgroup Ixo is given by
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PROOF. Let (g, h) be an element in Ixo . By definition one has that gxoh -1 =
xo or, equivalently, that h = E G~. In particular, the element h is
invariant under the conjugation K, i.e.

This is equivalent to = and the lemma follows. 1:1

COROLLARY 2.15. Let xo = noto E no exp be a point on a generic orbit.
Then

In particular, Ixo is isomorphic to a Cartan subgroup of G~ and the codi-
mension of the orbit is equal to the rank r of G.

REMARK 2.16. By definition, two orbits are of the same type if they have
conjugate isotropy subgroups. Let x E and y E nl exp i tr be points
on generic orbits, where the Cartan subalgebras t~ and the elements nk, nl
are chosen as in Theorem 2.13. The isotropy subgroups Ix and Iy are conjugate
in G~ x G~ if and only if t~ = t~ and [nl] - [nk] in the double coset space

WK (tr) / WJR (tr).
REMARK 2.17. Let t~ C be a Cartan subalgebra. Let no E be

a representative of a double coset in satisfying (i) of
Theorem 2.13. Then Ad(no) stabilizes g~ if and only if belongs to the
center Z(G~) of G~. In this case, the biinvariant subsets

and

are biholomorphically equivalent and the corresponding generic orbits have the
same complex geometric properties. The biholomorphism is in fact left trans-
lation by no, which is not equivariant but maps orbits into orbits.

As well shall see in Section 5, if t~ c G~ is a compact Cartan subalgebra,
the generic orbits intersecting no exp have very different properties depending
on whether "1J(no) E Z (G~)" or "1J(no) tJ Z (G~)".

3. - The CR-structure of a generic orbit 

In this section we determine the tangent space and the maximal complex
subspace of a generic orbit at an arbitrary point. In that which follows, we fix
the trivialization of the tangent bundle T G = G x g given by the left-invariant
vector fields on G. Capital letters X, Y will denote both vectors in g and the
corresponding left-invariant vector fields on G.
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The action of G~ x G~ on G induces global vector fields on G by the
following morphism of Lie algebras

The vector fields are tangent to the orbits and generate the tangent bundle
T S of every orbit S. In the local coordinates induced by the given trivialization
of T G = G x g one has

The sum in (3.2) is of course not direct. Given two points xo and xl - gxoh-1
on the same orbit S, the following transformation formula holds:

Here 1&#x3E;* denotes the differential of the map 4$ defined in (2.1 ). Since G~ x G~
acts on G by biholomorphic transformations, the CR-structure of S is preserved
by 1&#x3E;*, i.e.

Note that and are viewed as subspaces of g. By the above formulas,
the tangent bundle T S and the complex tangent bundle of a generic orbit
S are determined by the tangent space and the complex tangent space

a fixed reference point Xo E S.
In order to compute TcSxo’ choose a reference point xo of the form

where e is a Cartan subalgebra and no E (see Theorem 2.13). Let
t be the complexification of e and g = g« be the root decomposition
of g with respect to t. The Killing form B of g is real valued on g~ and non-
degenerate on t~. If q~~’ is the orthogonal complement of e in g~ with respect
to B, it is easily verified that

LEMMA 3.6. In the above notation, the tangent space T Sxo and the complex
tangent subspace at xo are given by

In particular, T Sxo / T c So -= tJR and S is generic also as a CR-submanifold of G
(cf. Definition 1.2).
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PROOF. According to formula (3.2), the tangent space to S at xo is given by

Write Ad(xJ) = DN, where D := and N := Ad(ng). Observe that
D It= Id It and D(q) = q. Since no normalizes t~, it follows that

Define := C q. By Corollary 2.15, one has that codiMR(S, G)
= dimJRtJR = r. A dimension argument shows that the sum t~ ED q~~’ + DN(q~)
is direct. Since DN stabilizes q, it follows that

4. - The Levi form of a generic orbit

The extension Z. Let S be a generic G~ x G~-orbit in G. In this section
we compute the Levi form of S at a base point xo. Given arbitrary tangent
vectors Z, W in Tc Sxo, it is necessary to extend them to local sections of the
subbundle of the tangent bundle T S and to compute their brackets at xo
(see Definition 1.7). Observe that the left-invariant vector fields on G are not

tangent to the G~ x G~-orbits. By Theorem 2.13, the base point xo E S can
be taken of the form 

-

where t~ c g~ is a Cartan subalgebra and no E Then by Lemma 3.6,
the tangent space and the complex tangent subspace to S at xo are given by

and

Let x - gxoh-1 be a point in a neighborhood of xo in S. Transformation
formula (3.4), given by ,

identifies the complex tangent subspace at x with a subspace of g. However,
such a formula cannot be used directly to define an extension Z (x ) of a vector
Z E q. Since the group elements g and h are not uniquely determined by x in
the presentation x = extension given by = Ad(h) Z"
would not be well defined. One has in fact that

for every g = gc and h = hc, with c E and in general 
Ad(h)Z for Z # 0.
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The ambiguity in the presentation (4.1) can be eliminated if the element "h"
is taken in an appropriate small neighborhood of the identity in exp C G~~’.
Let Uxo be a neighborhood of xo in G, such that every x E Uxo f1 S can be
written in a unique way as

with and

This determines a well-defined projection

and an extension Z(x) of Z E q can be defined as follows:

The brackets of the extensions Z, W. Let Z, W E q and let Z, W be local
extensions of Z, W to a neighborhood of xo. To compute the brackets [Z, W]xo
mod q, select a complex basis of g as follows: choose an arbitrary complex
basis (Zx) of q and complete it by a basis {N1,... Hr } of t, orthonormal with
respect to the Killing form B and formed by vectors Hj E tR = This
is possible since the restriction of the Killing form B ItR is positive definite.
Extend the vectors to global left-invariant vector fields on G. A local
extension Z = Z (x ) of a vector Z E q can be written as a linear combination
with non-constant coefficients of the vector fields 

The coefficients 1/Ji (x) are complex valued functions satisfying

LEMMA 4.6. Let Z, W be local extensions of Z, W E q to some neighborhood
of xo. Then

PROOF. Decompose Z and W according to (4.4) and evaluate the brackets
at the reference point xo. From (4.5) it follows that

The second formula follows in a similar way.
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REMARK 4.7. By Lemma 4.6, the computation of the brackets [2, W)xo
mod q involves the Lie brackets of g and the first derivatives of the

functions 1/1&#x26; with respect to Z at xo. The explicit description of these deriva-
tives is the main technical difficulty in the computation of the Levi form and

requires several preparatory lemmas. Observe that the functions 1/1&#x26; are not

holomorphic, and in general (JZ)(~w) ~ 
If 2, W are the local extensions defined in (4.3), the functions 1/1&#x26; are

defined in terms of the projection q. Hence, to calculate the derivatives Z (1/1&#x26;),
we need to describe the projection q quite explicitly.

The projection q. In order to construct the projection q : Uxo - exp consider
the map

LEMMA 4.8. The is a local diffeomorphism at 0.

PROOF. The identity

If Xo E no exp J tJR is a point on a generic orbit, arguing as in the proof of
Lemma 3.6, one obtains that

Hence the differential B11* at 0 is surjective and the claim follows. D

The map W defines local coordinates on a small neighborhood Uxo of xo in
G which locally parametrize the G~ x G R -orbits near xo. Every point x E Uxo
can be written as

for suitable vectors X (x ) E g~, and qR , depending on x.
Then the projection q of (4.2) is by definition
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Retaining the notation introduced in Section 3, write Ad(xo 1 ) = DN, where
D = and N = and set ()JR = := DN(q~) C q. Denote

by 7rq, 7r’ and nt the linear projections induced by the direct sum decomposition

onto q~, D and t respectively. Since (4.9) holds and the maps

have the same differential at 0, the projection q can be approximated at in-
finitesimal level by the linear projection

Observe that both q and 7r q depend on the point xo. Let Z be a vector in a
small neighborhood of 0 in g, such that xo. exp Z E Uxo . It follows that

It turns out that the linear projection n q is precisely what is needed to compute
the derivatives in Lemma 4.6, when the extensions Z, W are defined by (4.3).

The linear projection 7r . We want to obtain explicit formulas for the linear
projection 7rq. Recall that the base point xo is of the form

where To E is a Cartan subalgebra of g~ and no E Let t C g be

the complexification of e and let

be the root decomposition of g with respect to t. Write Z for the conjugate
K (Z) of a vector Z E g. Since t is K-stable, K acts on the set of roots by the
rule

A basis of q, which is formed by root vectors Za E is said to be

K-stable if 
-
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The complex Weyl group WG (t) acts on the root system ð(t) by

The linear operators

are associated to the basepoint xo. Note that N and C stabilize the root decom-
position. Denote by w the element in WG(t) corresponding to the restriction
N ! t. Write

and

Since C2 = Id (cf. Theorem 2.13), it follows that c(a) E {-1; +1} and Cl9a =
c(a)Id.

Define A R and A I the "real" and the "imaginary" part of a linear operator
A : q ~ q, as the compositions of the following maps:

Extend these R-linear maps to C-linear maps q 2013~ q. Denote by A the conjugate
operator A = K o A o K . Then one has that A R = 2 ( A ~- A ) and A I = 2 ( A - A ) .
To simplify the notation, in the next lemma we write A = DN.

LEMMA 4.14 (Projection formula). Let W be an arbitrary vector in q. Then
the linear projection 7r q of W is given by

PROOF. An arbitrary vector W E q can be decomposed both with respect to
q = jq R fl3 q~~’ and with respect to q = DR ED q~~’, yielding

and

By the uniqueness of these decomposition, one obtains the following system of
linear equations

Observe that, by Lemma 3.6, the operator A, is invertible. The solution of
the above system yields the first identity of the lemma. The second one is an
elementary reformulation of the former. D
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For a E A(t) define the K-stable subset

The next lemma is a collection of elementary facts which are need later.

LEMMA 4.15. In the above notation (cf. (4.11) (4.12) (4.13)), the following
identities hold:

PROOF. The proof of the lemma is elementary and is omitted. C7

Now we can calculate the linear projection 7rq on arbitrary root vectors
Wa E 9a.

LEMMA 4.16 (Projection formula). Let Wa be an arbitrary root vector in g«.
Then

PROOF. We compute the projection using the formulas of Lem-
ma 4.14. In order to do this, we need to compute DN and DN on the el-
ements of a K-stable basis of q formed by root vectors Za E ga.
For simplicity, we write a w for and Wa w for By definition,
aw(H) = a(w(H)), for every H E t. Using the identities i)-vi) of Lemma 4.15,
we derive the following formulas
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Since AI = from the above equations we obtain

In particular, we have that (DN)I(q[ot]) C q[ot’]. The inverse map :

q[a] -~ q[w(a)] is given by

Observe that = N-1 ( Wa ) . Putting everything together, we obtain then

The first derivatives of the coefficient functions. Recall that the decomposition
g = t fl3 q is orthogonal with respect to the Killing form B of g and that 
is an orthogonal basis of t with respect to B. Hence the coefficient functions

I defined in (4.4) can be expressed as
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Let Z E q. Then the first derivatives of the functions with respect to Z
at xo are given by

By (4.10), one obtains

Finally, (4.18) and Lemma 4.6 yield the following bracket formula

The Levi form of root vectors. We calculate the Levi form of a generic
orbit S at the reference point xo. Recall that the point xo is of the form

where To E tJR, tR is a Cartan subalgebra in gfl and Then the complex
tangent space TcSxo is identified with q and = 

is identified with the complex Cartan subalgebra t by the map

In particular, the Levi form of S at xo is a map

(cf. Lemma 3.6, Definition 1.7). Let be a K-stable basis of q formed

by roots vectors with respect to t. The next proposition gives explicit formulas
for the Levi form L(Z,,,, Zp).

PROPOSITION 4.21. Let Za E g,, and Za E gp. Then the following identities
hold modulo q

PROOF. Combining (1.9) and the bracket formula (4.19), one obtains

By substituting the projection formulas (4.16) in the above expression, the
desired result follows. D
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If t C g is an arbitrary K-stable Cartan subalgebra, the roots in A =

A(t) can be subdivided depending on their behaviour under the action of the
conjugation K.

DEFINITION 4.22. Denote by

Let q[a] := ga -~ Then q[a] = ga, for a E Or and q[a] - q[-a] -
ga fl3 g-a, for a E Ai -

COROLLARY 4.23. Let A = 0,. U Ai U Ac be the root system of g with respect
to t. Then

PROOF. The Levi form L(q[a], q[p]) is determined by the terms

Then, by Proposition 4.21, one has that L(q[a], is identically zero, unless
D

Quadratic Levi form. We conclude this section by giving an explicit formula
for the quadratic Levi form of a generic orbit S at the base point xo. As

usual, the point xo is of the form xo = no exp J To, where To E tJR, is a

Cartan subalgebra and no E Then, the quadratic Levi form is the map
L : q defined by L(Z) := L(Z, Z). Write

with the convention that each term q[a] = q[K(a)] ] appears in the above direct
sum exactly once. By Corollary 4.23, decomposition (4.24) is orthogonal with
respect to the Levi form. Therefore the quadratic Levi form is given by

In the next proposition we explicitly compute each of the terms appearing
in (4.25). By Re X and Im X we denote the real and imaginary part of a
vector X E t with respect to the decomposition t = t~ ED J t~ .
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PROPOSITION 4.26. Let Z be a vector in q and let

for E C, be the decomposition of Z with respect to a K -stable basis
of q formed by root vectors. Then:

(1) For a E Or

(2) For a E Ai and c(a) = 1,

If Im a (To) &#x3E; 0, then

(3) For a E Ai and c(a) = -1,

If Im a (To) &#x3E; 0, then 0  tanh Im a (To)  1 ; in particular

(4) For a E Ac

PROOF. 1) If a E Or, then -a E Or and [Za, E t. For c(a) = 1,
applying Proposition 4.21 we obtain
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If c (a ) _ -1, the proof of the corresponding statement follows in a similar way.
2) Let a E Ai and c(a) = 1. Recall that in this case ga and are

orthogonal with respect to the Levi form L. Applying Proposition 4.21, we
obtain

3) Let a E 0 i and c(a) _ -1. Then we have

4) Finally, if a E 0 ~ and c(a) = 1, we have

If c (a ) = - 1, the corresponding statement follows in a similar way. D

5. - Levi cone and applications

In this section, we compute the Levi cone of a generic orbit S at
a base point xo. In this way, we give a geometric meaning to the Levi form
which we calculated in Section 4. As usual, the point xo E S is of the form
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where To E t~, e is a Cartan subalgebra of gJR, and no E N~ (t~). Then, Cxo (S)
is a real cone in t~. Let t be the complexification of t~ and A = ð.(t) denote
the root system of g with respect to t. Then a system of positive roots 0+ can
be chosen such that

for all

REMARK. For Xo E one may have that a ( To ) = 0, for some a E A (t) .
However a ( To ) 5~ 0 for all a E Ai .

Let be a K-stable basis of q consisting of root vectors; let the

operator C = and the numbers c(a), for a E A, be the ones defined
in (4.12) and (4.13).

LEMMA 5.2. The Levi cone Cxo (S) of a generic orbit S at xo is a real cone in 0,
generated by the vectors

PROOF. The lemma follows directly from (5 .1 ) and Proposition 4.26. D

The next theorem gives a precise description of the Levi cone It

turns out that if e is a compact Cartan subalgebra and Xo E no exp Je, the
size of the cone depends on the element no E The case when

e is compact and i7(no) E is the only case when the Levi cone Cxo(S)
does not coincide with the whole vector space t. For simplicity, we state

the theorem for a simple and simply connected Lie group G. In some later

remarks, we explain how to deal with an arbitrary semisimple group.
THEOREM 5.3. Let G be a simply connected complex simple Lie group and

let C G be a real form. Let S be a generic GJR x with base point
Xo E no. expJtJR. Let A+ = 0+(t) be a system of positive roots for 11 chosen as
in (5 .1 ). Then the Levi cone C(S)xo of S at xo can be described as follows:
(i) If the Cartan subalgebra t1R is non-compact, then

(ii) If the Cartan subalgebra e is compact and 1J(no) (j. then

(iii) If the Cartan subalgebra e is compact and 1J(no) E Z(G R), then C(S)xQ is a
proper subset of e. More precisely, C(S),o is isomorphic to the dual W’ of the
Weyl chamber W defined by 0+.
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PROOF. Let be the set of dual roots in tR = ED t!. We can
assume, perhaps after a renormalization, that the K-stable basis of q
satisfies [Za, Z-,,,] = Ha, for all a E A. In the proof of the theorem, it is
convenient to identify tR = t+ ED tR with tR = tR via the map

We denote by C(S)xo as well the image in t~ of the cone C(S)xo by the above
map. By Lemma 5.2, after this identification, C(S),o is generated by the vectors

and

and

Let n C 0+ be a maximal set of positive simple roots. Since the vectors
form a basis of the vector space the interior of is non-

empty.
(i) Let t~ a be non-compact Cartan subalgebra. Then 0 ~ Di and, regard-

less whether the cone C(S),o contains at least the vectors }
for a E 0 B 0 i and (Hu) for a E A~. Statement (i) is equivalent to showing
that the vectors belong as well, for every a E n n At.

Note that if a, f3 E At and a E A, then a + f3 E At. Then every
maximal set of simple roots n C 0+ contains a root f3 E nBð.¡. If none of
the simple roots is imaginary, the theorem follows directly from Lemma 5.2.
If there are imaginary simple roots in n, let aI, ... as be consecutive simple
imaginary roots next to f3 in the Dynkin diagram of g. For the Killing form
B this means that

while

and

As a consequence, fJ + a 1 + ... + ai i is a root, for every i = 1,..., s, and is
not imaginary. It follows that ~H,~+al+...+ai E C(S)xo. Writing

one gets a similar relation among the corresponding dual roots

This implies that ±H,,i E C(S),O. Iterating his argument eventually yields that
} belong to for every simple root a. Hence tR.
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(ii) Let t~ be a compact Cartan subalgebra. Assume that the operator
C = Ad r¡(no) does not act on the root spaces as the identity i.e. c(p) _ - l, for
some root fJ E A (see (4.12) (4.13)). In this case A = Ai and, by Lemma 5.2,
the contains the vectors for a E At with c(a) = 1, and the
vectors for a E At with c(a) = -1. We need to show that the vectors

belong to as well, for all simple roots a E 
Recall that the operator C is a Lie algebra automorphism, i.e. C[Z«, ZO] =

[ C Z« , CZ~]. In particular, if a, ~8 are simple roots such that c(a) = 1, =

-1 and a + ~8 E A, then c(a ~- ~B) _ -1. It follows that there exists a simple
root B E At with c(fJ) = -1. If c(fJ) = -1 for every simple root fl E 
the statement follows directly from Lemma 5.2. Otherwise, let ai , ... , as be
consecutive simple roots, with = 1, next to ~8 in the Dynkin diagram of g.
Then +... -~ai is a root, for every i = 1, ... , s, and -f-... -~ai ) =
-1. Arguing as in (i), we obtain that = t~.

(iii) Let t~ be a compact Cartan subalgebra and assume that the operator
C = Ad 7(no) acts on the root spaces as the identity. By Lemma 5.2, the cone

is generated by the vectors Then it coincides with the dual
W" of the Weyl chamber

as stated in the theorem. D

REMARK 5.4. Let G be a simply connected complex semisimple Lie group
and G~ a real form of G. Then G decomposes as a direct product of simply
connected and K-stable complex subgroups G = G 1 x ... x Gn such that either Gj
is simple or H x H is a product of two copies of a simple Lie group H. In
the second case, the restriction of the conjugation H x H is given by (hl, h2) H
(r(h2), where r is a conjugation on H, and (H x H.

In this way, the real form G~ of G decomposes as G~ = G~ x ... x G R
where each G~ is a real form of for j = 1,..., n. Similarly, a generic
G~ x G~-orbit S in G decomposes as the product

of generic x G~-orbits Sj in Gj.
The complex tangent space to S at a base point is the direct sum

of the complex tangent spaces of all factors. By Corollary 4.23, such a sum
is orthogonal with respect to the Levi form. Therefore the Levi cone G(S)xo
of S at xo is the direct product of the Levi cones of all factors. Observe that
the real form of a non-simple factor Gj = H x H has, up to conjugation,
only one Cartan subalgebra ~ . Since ~ is the realification of a complex Cartan
subalgebra, it is non-compact.

REMARK 5.5. Assuming G simply connected in Theorem 5.3 is not an

essential restriction. Let G be an arbitrary complex semisimple Lie group and
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G~ a real form of G. Let G denote the universal covering group of G and
7r : G -~ G the corresponding covering map. Define := Then

is a real form of G, consisting of finitely many connected components.
Denote by Go the connected component of the identity of 6R . Denote by S
(respectively by SO) a generic orbit of G R x (respectively of Go x in

6. Theorem 5.3 applies to the orbit So, Clearly, all the connected components
of ~ have the same geometric properties as So. Since the map 7r is locally
biholomorphic and equivariant, the same is true for the orbit S in G, covered
by ~ and So .

We conclude this section by stating the main results of the paper. By Theo-
rem 5.3 and Remarks 5.4 and 5.5, we are able to determine which generic orbits
can be contained in the level sets of a biinvariant plurisubharmonic function or
in the boundary of a biinvariant Stein domain in G.

COROLLARY 5.6. Let S2 be a biinvariant domain in G. Assume Q contains in
its boundary a generic orbit So satisfying condition (i) or (ii) of Theorem 5.3. Then
SZ cannot be Stein.

PROOF. We show that all holomorphic functions defined on Q extend to a
strictly larger domain Q’ D Q. Let So C G be a generic orbit in G satisfying
condition (i) or (ii) of Theorem 5.3. Then, for every point x E So, the Levi
cone C(So)x coincides with vector space T(So)xITc(So)x. By the extension
Theorem 1.11, there exists an open neighborhood U(So) of So in G with the
property that every CR-function f on So extends to a holomorphic function /
on U(So).

The important fact is that, roughly speaking, a generic orbit sufficiently
close to So admits an open neighborhood with the extension property which
cannot be too small with respect to U(So). Fix a base point Xo E So lying in
the submanifold

where t~ c gJR is a Cartan subalgebra and no E NG (tl). Fix a distance function
d on A. Then U(So) can be assumed to be biinvariant of the form

where BR (xo) is a ball of center xo and radius R in A. Moreover, if R is

sufficiently small, for every x E BR (xo) the orbit is generic, intersects
BR (xo) transversally and exacly once (cf. Theorem 2.13).

Recall that every orbit S is real analytic and that for S in U (So) the CR-
structure depends in a real analytic way on the reference point x = S n BR (xo)
(see Section 3 and Section 4). Then, by a continuity argument (cf. [Bo],
ch. 15), every orbit S = GR. x - G~ sufficiently close to So admits a biinvariant
neighborhood with the extension property of the form Ur (S) = GJR. Br (x) ~ G~,
with radius r &#x3E; R / 2.
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Let S2 c G be a biinvariant domain containing the orbit So in its boundary.
Let be a biinvariant neighborhood of So with the extension property.
By the above discussion, there exists an orbit S contained in Q n U R/4(SO) and
such that U R/2 (S) has the extension property. Then every holomorphic function
on S2 extends to Q’ := SZ U UR/2(S).

COROLLARY 5.7. Let S be a generic orbit in G satisfying condition (i) or (ii) of
Theorem 5.3. Then S cannot be contained in a level set of a non-constant biinvariant
plurisubharmonic function.

REMARK 5.8. On a complex simple Lie group G there exist no non-
constant global plurisubharmonic functions which are biinvariant by a non-

compact real form G~ (see [L2]). Corollary 5.7 excludes the existence of
biinvariant plurisubharmonic functions on all biinvariant domains which are not
completely contained in the subsets

or

where e is a compact Cartan subalgebra and no E NG (e) satisfies Z (G~) .
If G~ is a non-compact simple Hermitian real form of G, then contains

a compact Cartan subalgebra e and the subset

admits both biinvariant Stein subdomains and biinvariant plurisubharmonic func-
tions. It contains for example the Olsanskii-semigroups (cf. [Nl], [N2]).
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