- 1. Sia X uno spazio topologico, e sia $A \subset X$ un sottospazio non vuoto.
 - (a) Se $H_n(A) = 0$, per ogni n, allora $H_n(X, A) \cong H_n(X)$, per ogni n (cf. Es.1 del foglio 3);
 - (b) Se $\widetilde{H}_n(X) = 0$, per ogni n, allora $H_n(X, A) \cong \widetilde{H}_{n-1}(A)$, per ogni n.

Sol.: Consideriamo la successione esatta di omologia ridotta della coppia

$$\dots \to \widetilde{H}_n(A) \to \widetilde{H}_n(X) \to \widetilde{H}_n(X,A) \to \widetilde{H}_{n-1}(A) \to \widetilde{H}_{n-1}(X) \to H_{n-1}(X,A) \to \dots$$

Se $\widetilde{H}_n(A) = 0$, per ogni n, allora dall'esattezza di

$$\dots \to 0 \to \widetilde{H}_n(X) \to \widetilde{H}_n(X,A) \to 0 \to \dots$$

si ottiene $H_n(X,A) \cong \widetilde{H}_n(X)$, per ogni n. Nota che per n=0, si usa il fatto che $A \neq \emptyset$, per avere $H_{-1}(A)=0$.

Se $\widetilde{H}_n(X) = 0$, per ogni n, allora dall'esattezza di

$$\dots \to 0 \to \widetilde{H}_n(X,A) \to \widetilde{H}_{n-1}(A) \to 0 \to \dots$$

si ottiene $H_n(X,A) \cong \widetilde{H}_{n-1}(A)$, per ogni n.

2. Calcolare i gruppi di omologia $H_k(D^n, A_n)$, dove $A_n = \{x \in D^n \mid \frac{1}{2} < |x| \le 1\}$. Qui $D^n = \{x \in \mathbf{R}^n \mid |x| \le 1\}$ è il disco chiuso in \mathbf{R}^n .

Sol.: Poiché $\widetilde{H}_k(D^n) = 0$ per ogni k, dal punto (b) dell'esercizio 1, segue che

$$H_k(D^n, A_n) \cong \widetilde{H}_{k-1}(A_n), \quad \forall k.$$

Poiché S^{n-1} è un retratto di deformazione di A_n , per l'invarianza omotopica dei gruppi di omologia, vale

$$H_k(D^n, A_n) \cong \widetilde{H}_{k-1}(S^{n-1}) = \begin{cases} \mathbf{Z} & k = n \\ 0 & \text{altrimenti.} \end{cases}$$

3. Verificare che $H_k(S^n, D_+^n) \cong H_k(D_-^n, S^{n-1})$, dove D_+^n e D_-^n sono rispettivamente l'emisfero superiore e l'emisfero inferiore della sfera (equatore incluso).

Sol.: Dal punto (a) e dal punto (b) dell'esercizio 1, troviamo rispettivamente

$$H_k(S^n, D^n_+) \cong \widetilde{H}_k(S^n) = \begin{cases} \mathbf{Z} & k = n \\ 0 & \text{altrimenti} \end{cases}$$

е

$$H_k(D_-^n, S^{n-1}) \cong \widetilde{H}_{k-1}(S^{n-1}) = \begin{cases} \mathbf{Z} & k = n \\ 0 & \text{altrimenti.} \end{cases}$$

Da ciò la tesi.

4. Calcolare i gruppi di omologia $H_k(\mathbf{R}^n, \mathbf{R}^n \setminus \{0\})$ e $H_k(S^n, S^n \setminus \{S\})$, dove S è il polo sud.

Sol.: Dal punto (b) dell'esercizio 1, e dal fatto che S^{n-1} è un retratto di deformazione di $\mathbb{R}^n \setminus \{0\}$, troviamo

$$H_k(\mathbf{R}^n, \mathbf{R}^n \setminus \{0\}) \cong \widetilde{H}_k(\mathbf{R}^n \setminus \{0\}) \cong \widetilde{H}_k(S^{n-1}) = \begin{cases} \mathbf{Z} & k = n-1 \\ 0 & \text{altrimenti.} \end{cases}$$

Dal punto (a) dell'esercizio 1, e dal fatto che $S^n \setminus \{S\}$ è omeomorfo ad \mathbb{R}^n , troviamo

$$H_k(S^n, S^n \setminus \{S\}) \cong \widetilde{H}_k(S^n) = \begin{cases} \mathbf{Z} & k = n \\ 0 & \text{altrimenti.} \end{cases}$$

5. Calcolare i gruppi di omologia e di omologia ridotta dei seguenti spazi:

$$S^1 \sqcup S^1$$
, $D^3 \times S^1$, $S^2 \vee S^2$, $D^2 \setminus \{P, Q, R\}$,

dove P, Q, R sono tre punti in D^2 .

Sol.:

(a)
$$X = S^1 \sqcup S^1$$
.

Per ogni $n \geq 0$, l'ennesimo gruppo di omologia di uno spazio X sconnesso è dato dalla somma diretta degli ennesimi gruppi di omologia delle sue componenti connesse. In questo caso le componenti connesse di X sono connesse per archi, per cui

$$H_0(X) = \mathbf{Z} \oplus \mathbf{Z}, \quad \widetilde{H}_0(X) = \mathbf{Z}, \quad H_1(X) = \mathbf{Z} \oplus \mathbf{Z}, \quad H_i(X) = 0, \ i > 1.$$

(b) $D^3 \times S^1$.

Tramite la mappa $(x,y) \mapsto (tx,y)$, $t \in [0,1]$, lo spazio $S^1 = \{(0,y) \in D^3 \times S^1\}$ è un retratto di deformazione di X. Per cui

$$H_0(X) = \mathbf{Z}, \quad \widetilde{H}_0(X) = 0, \quad H_1(X) = \mathbf{Z}, \quad H_i(X) = 0, \ i > 1.$$

(c) $X = S^2 \vee S^2$.

Usando Mayer-Vietoris, troviamo

$$\dots \to \widetilde{H}_n(A \cap B) \to \widetilde{H}_n(A) \oplus H_n(B) \to \widetilde{H}_n(X) \to \widetilde{H}_{n-1}(A \cap B) \to \dots$$

Da cui

$$H_0(X) = \mathbf{Z}, \quad H_0(X) = 0, \quad \widetilde{H}_1(X) \cong H_1(A) \oplus H_1(B) = 0,$$

 $H_2(X) \cong H_2(A) \oplus H_2(B) = \mathbf{Z} \oplus \mathbf{Z}, \quad H_i(X) = 0, \ i > 2.$

(d) $X = D^2 \setminus \{P, Q, R\}.$

Lo spazio X è omotopicamente equivalente a $S^1 \vee S^1 \vee S^1$, per cui

$$H_0(X) = \mathbf{Z}, \quad \widetilde{H}_0(X) = 0, \quad H_1(X) = \mathbf{Z} \oplus \mathbf{Z} \oplus \mathbf{Z}, \quad H_i(X) = 0, \ i > 1.$$

6. Calcolare i gruppi di omologia $H_k(S^n, S^{n-1})$.

Sol.: Identifichiamo S^{n-1} con l'equatore di S^n , e osserviamo che (S^n, S^{n-1}) è una buona coppia. Ne segue che $H_k(S^n, S^{n-1}) \cong \widetilde{H}_k(S^n/S^{n-1})$, per ogni k. Poiché' S^n/S^{n-1} è omeomorfo a $S^n \vee S^n$, troviamo

$$\widetilde{H}_k(S^n/S^{n-1}) = \begin{cases} \mathbf{Z} \oplus \mathbf{Z} & k = n \\ 0 & \text{altrimenti.} \end{cases}$$

- 7. (vedi Hatcher, pag.125, in alto). Siano X uno spazio ed $A \subset X$ un sottospazio. Sia CA il cono su A, ossia il quoziente $(A \times [0,1])/(A \times \{0\})$. Infine, sia $X \cup CA$ lo spazio ottenuto incollando $A \times \{0\} \subset CA$ ad X lungo A. Verificare che $H_n(X,A) \cong \widetilde{H}_n(X \cup CA)$, per ogni n. Osservare che la Proposizione 2.22, pag. 124, non vale per coppie arbitrarie (X,A): vedi Esercizio 26, pag. 133.
- 8. (vedi Hatcher, Esempio 2.23, parte 2, pag.125). Considerare la Delta-struttura della sfera S^n data da due n-simplessi Δ_1^n e Δ_2^n , incollati lungo il bordo rispettando l'ordinamento dei vertici. Verificare che la differenza $\Delta_1^n \Delta_2^n$, vista come n-catena singolare, è un generatore di $H_n(S^n)$.

Sol: Sia $\gamma = \iota_n^1 - \iota_n^2 \in C_n(S^n)$, dove $\iota_i : \Delta_i^n \to S^n$ è "l'inclusione" del simplesso Δ_i^n in $S^n = \Delta_1 \cup \Delta_2$. Osserviamo che, per come sono incollati Δ_1 e Δ_2 , si ha

$$\partial \gamma = \sum_{i} (-1)^{i} (\iota_{n}^{1} - \iota_{n}^{2}) | [v_{0} \dots \hat{v}_{i} \dots v_{n}] = 0.$$

Dunque γ definisce un elemento in $H_n(S^n)$.

Facciamo vedere che esiste un isomorfismo $\psi: H_n(S^n) \to H_n(\Delta_1^n, \partial \Delta_1^n)$ (entrambi isomorfi a **Z**) che manda γ nell'elemento $\iota_n: \Delta_1^n \to \Delta_1^n$ di $C_n(\Delta_1^n, \partial \Delta_1^n)$. Poiché ι_n è un generatore di $H_n(\Delta_1^n, \partial \Delta_1^n)$ (vedi Nota qui sotto), ne segue che γ è un generatore di $H_n(S^n)$.

Costruzione di ψ :

mostriamo che esistono isomorfismi

$$\sigma: H_n(S^n) \to H_n(S^n, \Delta_2^n), \qquad \tau: H_n(\Delta_1^n, \partial \Delta_1^n) \to H_n(S^n, \Delta_2^n)$$

con la proprietà che $\sigma(\gamma) = \tau(i_n^1) \in H_n(S^n, \Delta_2^n)$. Dopodiché $\psi = \tau^{-1} \circ \sigma$.

L'isomorfismo σ deriva dalla successione esatta della coppia (S^n, Δ_2^n) , dove $\widetilde{H}_*(\Delta_2^n) = 0$. Si ha

$$\sigma(\gamma) = \iota_n^1 - \iota_n^2 \mod C_n(\Delta_2^n)$$

= ι_n^1 .

Per l'isomorfismo τ , consideriamo il diagramma commutativo

$$\begin{array}{cccc} \Delta_1^n & \hookrightarrow & S^n = \Delta_1^n \cup \Delta_2^n \\ & & & \downarrow^q \\ \Delta_1^n/\partial \Delta_1^n & \stackrel{f}{\longrightarrow} & S^n/\Delta_2^n, \end{array}$$

e osserviamo che f è un omeomorfismo. Ne segue che $f_*: H_n(\Delta_1^n/\partial \Delta_1^n) \to H_n(S^n/\Delta_2^n)$ è un isomorfismo. Inoltre, poiché $(\Delta_1^n, \partial \Delta_1^n)$ ed (S^n, Δ_2^n) sono buone coppie, $q_*: H_n(\Delta_1^n, \partial \Delta_1^n) \to H_n(\Delta_1^n/\partial \Delta_1^n)$ e $p_*: H_n(S^n, \Delta_2^n) \to H_n(S^n/\Delta_2^n)$ sono isomorfismi. Di conseguenza anche

$$\tau: H_n(\Delta_1^n, \partial \Delta_1^n) \to H_n(S^n, \Delta_2^n),$$

che manda

$$\eta \in C_n(\Delta_1^n) \mapsto \eta \in C_n(S^n) \mod C_n(\Delta_2^n),$$

$$\tau(i_n^1) = i_n^1$$
.

Nota. (vedi Hatcher, Esempio 2.23, parte 1, pag.125). La mappa identità $i_n: \Delta^n \to \Delta^n$, vista come elemento di $C_n(\Delta^n)$, è un generatore di $H_n(\Delta^n, \partial \Delta^n)$ (sappiamo che $H_n(\Delta^n, \partial \Delta^n) \cong \mathbf{Z}$).

Dim. Osserviamo che

$$\partial i_n = \sum (-1)^i i_n | [v_0 \dots \hat{v}_i \dots v_n] = 0 \mod C_{n-1}(\partial \Delta^n),$$

per cui i_n definisce un elemento in $H_n(\Delta^n, \partial \Delta^n)$. Procediamo per induzione.

Per n=0 abbiamo $H_0(\Delta^0, \partial \Delta^0) \cong H_0(\Delta^0) \cong \mathbf{Z}i_0$.

Supponiamo per ipotesi induttiva che $i_{n-1}: \Delta^{n-1} \to \Delta^{n-1}$ sia un generatore di $H_{n-1}(\Delta^{n-1}, \partial \Delta^{n-1})$. Dall'ipotesi induttiva, otteniamo la tesi mostrando che esiste un isomorfismo

$$\phi: H_n(\Delta^n, \partial \Delta^n) \to H_{n-1}(\Delta^{n-1}, \partial \Delta^{n-1})$$

che manda i_n in i_{n-1} .

Costruzione di ϕ .

Sia Λ =l'unione di tutte le facce di $\partial \Delta^n$, meno una. Mostriamo che esistono isomorfismi

$$\delta: H_n(\Delta^n, \partial \Delta^n) \to H_{n-1}(\partial \Delta^n, \Lambda), \qquad g: H_{n-1}(\Delta^{n-1}, \partial \Delta^{n-1}) \to H_n(\partial \Delta^n, \Lambda)$$

con la proprietà che

$$\delta(i_n) = g(i_{n-1}).$$

Dopodiché $\phi = g^{-1} \circ \delta$.

L'isomorfismo δ deriva dalla successione esatta della tripla $\Lambda \subset \partial \Delta^n \subset \Delta^n$, dove $H_*(\Delta^n, \Lambda) = 0$. Si ha

$$\delta(i_n) = \partial i_n \mod \Lambda$$

= $\pm i_n | F$. (1)

Per l'isomorfismo g, consideriamo il diagramma commutativo

$$\begin{array}{cccc} \Delta^{n-1} & \hookrightarrow & \partial \Delta^n \\ & \downarrow^p & & \downarrow^q \\ \Delta^{n-1}/\partial \Delta^{n-1} & \xrightarrow{f} & \partial \Delta^n/\Lambda, \end{array}$$

dove $\iota: \Delta^{n-1} \to \partial \Delta^n$ è l'omeomorfismo di Δ^{n-1} sulla faccia mancante $F \subset \partial \Delta^n$, e osserviamo che f è un omeomorfismo. Ne segue che $f_*: H_n(\Delta^{n-1}/\partial \Delta^{n-1}) \to H_n(\partial \Delta^n/\Lambda)$ è un isomorfismo. Inoltre, poiché $(\Delta^{n-1}, \partial \Delta^{n-1})$ ed $(\partial \Delta^n, \Lambda)$ sono buone coppie, $q_*: H_n(\Delta^{n-1}, \partial \Delta^{n-1}) \to H_n(\Delta^{n-1}/\partial \Delta^{n-1})$ e $p_*: H_n(\partial \Delta^n, \Lambda) \to H_n(\partial \Delta^n/\Lambda)$ sono isomorfismi. Di conseguenza anche

$$g: H_n(\Delta^{n-1}, \partial \Delta^{n-1}) \to H_n(\partial \Delta^n, \Lambda),$$

che manda

$$\eta \in C_n(\Delta^{n-1}) \mapsto \eta \in C_n(\partial \Delta^n) \mod C_n(\Lambda),$$

è un isomorfismo. Si ha

$$\tau(i_{n-1}) = \iota \circ i_{n-1}. \tag{2}$$

Confrontando (1) & (2), si ha la tesi.