- 1. Determinare tutti i rivestimenti di S^1 . Verificare che sono normali e per ognuno di essi determinare il gruppo degli automorfismi di rivestimento (deck-transformations).
- 2. Determinare tutti i rivestimenti del toro $T = S^1 \times S^1$ e del cilindro $C = S^1 \times \mathbf{R}$. Verificare che sono normali e per ognuno di essi determinare il gruppo degli automorfismi di rivestimento (deck-transformations).
- 3. Determinare tutti i rivestimenti di $\mathbb{R}P^n$, per $n \geq 1$. Verificare che sono normali e per ognuno di essi determinare il gruppo degli automorfismi di rivestimento (deck-transformations).
- 4. Hatcher, esercizio 16, pag. 80.
 - (a) Usare il risultato dell'esercizio per dimostrare che il rivestimento semplicemente connesso di uno spazio X è un rivestimento di ogni altro rivestimento di X (da cui il nome di rivestimento universale).
 - (b) Sia X uno spazio che ammette un rivestimento universale. Se (X_1, p_1) è un rivestimento di X e (X_2, p_2) è un rivestimento di X, allora (X_2, p_1p_2) è un rivestimento di X.
- 5. Determinare il rivestimento universale di \mathbb{C}^* . Determinare gli automorfismi del rivestimento $p: \mathbb{C}^* \to \mathbb{C}^*$, dato da $z \mapsto z^n$.
- 6. (Massey, es. 2.4, pag.123. (non immediato)) Siano X e Y spazi connessi per archi, localmente connessi per archi, X compatto di Hausdorff. Sia $f: X \to Y$ un omeomorfismo locale. Allora $f: X \to Y$ è un rivestimento.
- 7. Hatcher, esercizio 17, pag. 80.
- 8. Sia X uno spazio che ammette rivestimento universale e sia $x_0 \in X$. Siano $H \subset K$ sottogruppi di $\Pi_1(X, x_0)$ e siano

$$p_H: (\widetilde{X}_H, \widetilde{x}_H) \to (X, x_0), \qquad p_K: (\widetilde{X}_K, \widetilde{x}_K) \to (X, x_0)$$

i rivestimenti che soddisfano rispettivamente le condizioni

$$p_{H*} \Pi_1(\widetilde{X}_H, \widetilde{x}_H) = H, \qquad p_{K*} \Pi_1(\widetilde{X}_K, \widetilde{x}_K) = K.$$

Allora esiste un'unica mappa continua

$$p_{HK}: (\widetilde{X}_H, \widetilde{x}_H) \to (\widetilde{X}_K, \widetilde{x}_K)$$
 (*)

compatibile con le proiezioni su X. La mappa p_{HK} è una mappa di rivestimento. Questo dice che alle inclusioni di gruppi

$$\{e\}\subset H\subset K\subset G$$

corrispondono rivestimenti

$$(\widetilde{X},\widetilde{x}) \to (\widetilde{X}_H,\widetilde{x}_H) \to (\widetilde{X}_K,\widetilde{x}_K) \to (X,x_0).$$

Se H è un sottogruppo normale di K, allora (*) è un rivestimento normale con gruppo di automorfismi isomorfo a K/H. (Suggerimento: Se $(\widetilde{X}, \widetilde{x}) \to (X, x_0)$ è il rivestimento universale, allora $X \cong \widetilde{X}/G$, con $G \cong \Pi_1(X, x_0)$ gruppo degli automorfismi di rivestimento).