COGNOME

NOME

Risolvere gli esercizi negli spazi predisposti. È necessario accompagnare le risposte con spiegazioni chiare e sintetiche. Consegnare SOLO QUESTO FOGLIO. Ogni esercizio vale 6 punti.

1. Sia dato il piano
$$\pi = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbf{R}^3 \mid x_2 + x_3 = 0 \right\} e \ sia \ P = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

- (a) Determinare la proiezione ortogonale di P su π .
- (b) Determinare una retta ortogonale a π e passante per P. Quante ce ne sono?
- (c) Determinare una retta parallela a π e passante per P. Quante ce ne sono?

(a) Abbiamo
$$\pi = \text{span}\{\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1 \end{pmatrix}\} = \text{span}\{\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1/\sqrt{2}\\-1/\sqrt{2} \end{pmatrix}\}, \text{ dove }\{\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1/\sqrt{2}\\-1/\sqrt{2} \end{pmatrix}\}$$
 è una base ortonormale di π . La proiezione ortogonale di P su π è data quindi da

$$\Pi_{\pi}(P) = \left(P \cdot \begin{pmatrix} 1\\0\\0 \end{pmatrix}\right) \begin{pmatrix} 1\\0\\0 \end{pmatrix} + \left(P \cdot \begin{pmatrix} 0\\1/\sqrt{2}\\-1/\sqrt{2} \end{pmatrix}\right) \begin{pmatrix} 0\\1/\sqrt{2}\\-1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

(b) C'e' un'unica retta ortogonale a π e passante per P: in forma parametrica è data da

$$r: \quad X = P + tN, \quad t \in \mathbf{R}, \ N = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix},$$

dove N è un vettore normale al piano π .

(c) Ci sono invece infinite rette parallele a π e passanti per P: in forma parametrica si ottengono come

$$s: X = P + sB, s \in \mathbf{R},$$

dove B è un qualunque vettore parallelo al piano π . Ad esempio $B = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ oppure $B = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$.

$$2. \ \ Siano \ \ dati \ V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbf{R}^4 \ | \ \left\{ \begin{matrix} x_1 - x_3 = 0 \\ x_2 = 0 \end{matrix} \right\}, \quad W = \mathrm{span}\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \}, \quad \mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \ in \ \mathbf{R}^4.$$

- (a) Determinare se \mathbb{R}^4 è somma diretta di V e W, giustificando la risposta.
- (b) Determinare una base ortonormale di W.
- (c) Determinare se \mathbf{v} appartiene a $V, W, V \cap W, V + W$. Giustificare le risposte.

(a) Abbiamo
$$V = \operatorname{span}\{\begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}\}$$
, da cui dim $V = 2$, e $W = \operatorname{span}\{\begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}\}$, da cui dim $W = 2$.

Per definizione \mathbb{R}^4 è somma diretta di V e W se e solo se

$$\mathbf{R}^4 = V + W, \quad \text{e} \quad V \cap W = \{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \}.$$

Dall'eliminazione di Gauss, si trova che i vettori
$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
 sono linearmente dipendenti.

Precisamente il sottospazio V+W da essi generato ha dimensione tre (e per Grassmann $V\cap W$ ha dimensione uno). Dunque \mathbf{R}^4 non è somma diretta di V e W.

(b) Una base ortogonale di W è data dai vettori

$$\mathbf{u}_{1} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{u}_{2} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

Una base ortonormale di W è data dai vettori

$$e_1 = \begin{pmatrix} 0 \\ 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix}, \quad e_2 = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \\ 0 \end{pmatrix}.$$

(c) È immediato vedere che \mathbf{v} non soddisfa le equazioni di V, per cui $\mathbf{v} \notin V$ e di conseguenza $\mathbf{v} \notin V \cap W$. Si vede facilemente anche che $\mathbf{v} \notin W$: infatti

$$\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \lambda \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \lambda, \mu \in \mathbf{R}$$

non ha soluzioni. Dai calcoli al punto (a) si ha

$$V + W = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}.$$

Anche in questo caso

$$\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \lambda, \mu, \gamma \in \mathbf{R}$$

non ha soluzioni, per cui $\mathbf{v} \notin V + W$.

- $3. \ \textit{Sia L}: \mathbf{R}^3 \rightarrow \mathbf{R}^3 \ \textit{l'applicazione data da } X \mapsto MX, \ \textit{dove } X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \ \textit{ed } M = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1/2 & 0 \end{pmatrix}.$
 - (a) Determinare nucleo $\ker L$ e immagine $L(\mathbf{R}^3)$ di L, esibendone una base.
 - (b) Calcolare l'immagine tramite L del piano $\pi = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbf{R}^3 \mid x_3 = 0 \}$, esibendone una base. Che dimensione ha l'intersezione ker $L \cap \pi$? Spiegare la risposta.
 - (c) Determinare un sottospazio U di \mathbb{R}^3 tale che dim F(U) = 1. Spiegare la risposta.
- (a) Risolvendo il sistema lineare MX = O, si trova $\ker(L) = \operatorname{span}\left\{ \begin{pmatrix} 1/2 \\ -1 \\ 1 \end{pmatrix} \right\}$ e dim $\ker L = 1$. Poiché le colonne della matrice rappresentativa sono le immagini dei vettori (che formano una base di \mathbf{R}^3) $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

tramite L, abbiamo che

$$L(\mathbf{R}^3) = \operatorname{span}\left\{ \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1/2 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\} = \operatorname{span}\left\{ \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}.$$

I vettori $\left\{ \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$ formano una base di $L(\mathbf{R}^3)$. In particolare dim $L(\mathbf{R}^3) = 2$.

(b) Poiché
$$\pi = \text{span}\left\{\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}\right\}$$
, si ha $L(\pi) = \text{span}\left\{\begin{pmatrix} 2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1/2 \end{pmatrix}\right\}$ e dim $L(\pi) = 2 = \dim \pi$. Dalla formula

$$\dim \pi = \dim L(\pi) + \dim \pi \cap \ker L$$

segue che dim $\pi \cap \ker L = 0$.

- (c) Un sottospazio U di \mathbb{R}^3 tale che dim F(U) = 1 può essere un sottospazio di dimensione uno con $U \cap \ker L =$ $\{O\}$, oppure un sottospazio di dimensione due con dim $U \cap \ker L = 1$. Ad esempio $U = \operatorname{span}\left\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right\}$, oppure $U = \operatorname{span}\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1/2\\-1\\1 \end{pmatrix} \right\}.$
 - 4. Sia data la quadrica $\mathcal{Q} := \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbf{R}^3 \mid x_1^2 + 3x_2^2 = 1 \right\}$ in \mathbf{R}^3 .
 - (a) Determinare quattro punti distinti di Q, non complanari.
 - (b) Verificare che se $P = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix}$ appartiene a \mathcal{Q} , allora $P + t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ appartiene a \mathcal{Q} , per ogni $t \in \mathbf{R}$.
- (a) Ad esempio: $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1/3 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1/3 \\ 4 \end{pmatrix}$.
- (b) Si ha che $P \in \mathcal{Q}$ se e solo se $p_1^2 + 3p_2^2 = 1$. Per ogni $t \in \mathbf{R}$, i punti $P + t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \\ p_2 + t \end{pmatrix}$ soddisfano la stessa relazione e dunque appartengono a Q.
- (c) Al variare di $t \in \mathbf{R}$, i punti $P + t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 + t \end{pmatrix}$ formano la retta verticale passante per P. Dunque Q è un cilindro ellittico che interseca il piano orizzontale $x_3 = 0$ nell'ellisse di equazione $x_1^2 + 3x_2^2 = 1$.
 - 5. (a) Sia V uno spazio vettoriale reale e sia $L:V\to V$ un'applicazione lineare. Richiamare la definizione di autovettore di L di autovalore $\lambda \in \mathbf{R}$.
 - (b) Data l'applicazione lineare

$$F: \mathbf{R}^3 \to \mathbf{R}^3, \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \qquad \theta \neq k\pi, \ k \in \mathbf{Z},$$

determinare se
$$\mathbf{v} = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$$
 è autovettore di F .

- (c) Determinare un insième massimale di autovettori linearmente indipendenti di F. Dire se F è diagonalizzabile, spiegando la risposta.
- (a) Vedi testi...
- (b) Calcolando

$$M \cdot \mathbf{v} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} \cos \theta + 2\sin \theta \\ \sin \theta + 2\cos \theta \\ -1 \end{pmatrix},$$

si vede che non esiste $\lambda \in \mathbf{R}$ tale che $M\mathbf{v} = \lambda \mathbf{v}$. Dunque \mathbf{v} non è un autovettore di F.

(c) Il polinomio caratteristico di F è dato da

 \mathbf{R}^3 fatta di autovettori di F.

$$P_{\lambda} = \det(M - \lambda I_3) = ((\cos \theta - \lambda)^2 + \sin^2 \theta)(1 - \lambda) = (\lambda^2 - 2\cos \theta \lambda + 1)(1 - \lambda)$$

ed ha due radici complesse coniugate e una radice reale $\lambda=1$. L'autospazio di autovalore $\lambda=1$ è dato da $V_1=\mathrm{span}\{\begin{pmatrix}0\\0\\1\end{pmatrix}\}$ ed ha dimensione 1. Un insieme massimale di autovettori linearmente indipendenti di F è formato dal solo vettore $\begin{pmatrix}0\\0\\1\end{pmatrix}\in V_1$. L'applicazione non è diagonalizzabile perchè non esiste una base di

Geometricamente, F è la rotazione di un angolo θ intorno al vettore $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. L'asse x_3 è asse di rotazione, e dunque fissato da F. Nessuna retta del piano $x_3=0$ è mandata in se.