Numeri complessi.

I numeri complessi **C** sono l'insieme delle combinazioni formali z = x + iy, dove x, y sono numeri reali e $i = \sqrt{-1}$ è l'unità immaginaria che soddisfa $i^2 = -1$. I numeri x e y sono detti rispettivamente la parte reale e la parte immaginaria di z = x + iy e sono indicati con

$$x = \text{Re}z, \qquad y = \text{Im}z.$$

Vale l'inclusione $\mathbf{R} \subset \mathbf{C}$, identificando i numeri reali \mathbf{R} con i numeri complessi di parte immaginaria nulla. I numeri complessi si posono sommare e moltiplicare fra loro, mediante

$$(a+ib) + (c+id) = (a+c) + i(b+d),$$
 $(a+ib)(c+id) = (ac-bd) + i(ad+bc).$

Si verifica facilmente somma e prodotto così definiti hanno le seguenti proprietà:

- s1) $\forall z_1, z_2 \in \mathbf{C}$ $z_1 + z_2 = z_2 + z_1$ (proprietà commutativa della somma)
- s2) $\forall z_1, z_2, z_3 \in \mathbf{C}$ $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$ (proprietà associativa della somma)
- s3) $\exists \mathbf{0} = 0 + i0 \in \mathbf{C}$: $z + \mathbf{0} = \mathbf{0} + z = z \quad \forall z \in \mathbf{C}$ (elemento neutro per la somma)
- s4) $\forall z = x + iy \in \mathbf{C}$ $z + (-z) = (-z) + z = \mathbf{0}$, ove -z = -x iy (opposto per la somma)
- p1) $\forall z_1, z_2 \in \mathbf{C}$ $z_1 z_2 = z_2 z_1$ (proprietà commutativa del prodotto)
- p2) $\forall z_1, z_2, z_3 \in \mathbf{C}$ $z_1(z_2z_3) = (z_1z_2)z_3$ (proprietà associativa del prodotto)
- p3) $\exists \mathbf{1} = 1 + i0 \in \mathbf{C}$: $z\mathbf{1} = \mathbf{1}z = z \ \forall z \in \mathbf{C}$ (elemento neutro per il prodotto)
- p4) $\forall z = x + iy \neq \mathbf{0} \ \exists z^{-1} = \frac{x iy}{x^2 + y^2} : \ z^{-1}z = zz^{-1} = \mathbf{1}$ (inverso per il prodotto)
- d) $\forall z_1, z_2, z_3 \in \mathbf{C}$ $z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$ (proprietà distributiva di somma e prodotto)

Costruiamo esplicitamente l'inverso di un numero complesso $z=x+iy\neq \mathbf{0}$: sarà un numero complesso w=a+ib tale che

$$zw = (xa - yb) + i(xb + ya) = 1 \quad \text{o, equivalentemente} \begin{cases} xa - yb = 1 \\ xb + ya = 0 \end{cases}. \tag{*}$$

Si verifica facilmente che il sistema lineare (*), nelle incognite a=Rew e b=Imw, ammette soluzione se e solo se x e y non sono entrambi nulli, quando cioè $z\neq \mathbf{0}$. In tal caso la soluzione è anche unica ed è data da $a=\frac{x}{x^2+y^2}$ e $b=\frac{-y}{x^2+y^2}$.

Si dice coniugato di z = x + iy il numero complesso $\overline{z} = x - iy$. L'operazione di *coniugio* ha le seguenti proprietà:

$$\overline{\overline{z}} = z$$

$$\operatorname{Re} z = (z + \overline{z})/2, \quad \operatorname{Im} z = (z - \overline{z})/2i, \quad z^{-1} = \overline{z}/z\overline{z}$$

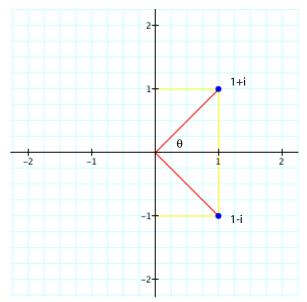
$$\overline{z + w} = \overline{z} + \overline{w}$$

$$\overline{zw} = \overline{z} \cdot \overline{w}$$

$$\overline{z^{-1}} = \overline{z}^{-1}$$

$$z\overline{z} = x^2 + y^2 > 0$$

L'insieme C si può rappresentare nel piano cartesiano \mathbf{R}^2 , facendo corrispondere a z=x+iy il punto di coordinate $(x,y)=(\mathrm{Re}z,\mathrm{Im}z)$. In questa rappresentazione, il coniugato \overline{z} è il simmetrico di z rispetto all'asse x e il modulo di z, dato da $|z|=\sqrt{z\overline{z}}$, è la distanza di z dall'origine.



Il numero complesso z = 1 + i e il suo coniugato $\overline{z} = 1 - i$.

Per il modulo di un numero complesso valgono le seguenti proprietà:

 $\operatorname{Re} z \le |z|, \quad \operatorname{Im} z \le |z|$

 $|z| = |\overline{z}|$

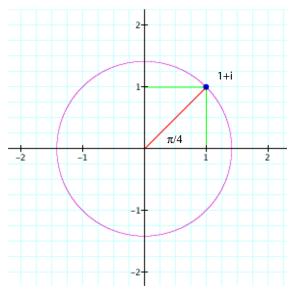
 $|z_1 z_2| = |z_1||z_2|$

 $|z_1 + z_2| \le |z_1| + |z_2|$ (disuguaglianza triangolare).

Se si indica con θ l'angolo tra l'asse x e il segmento congiungente z con l'origine, si ha $x=|z|\cos\theta$ e $y=|z|\sin\theta$. Si ottiene così la forma trigonometrica del numero complesso z

$$z = |z|(\cos\theta + i\sin\theta).$$

L'angolo θ si chiama l'argomento di z e si indica con $\theta = \arg(z)$. Se $z \neq \mathbf{0}$ esso è determinato solo a meno di multipli interi di 2π (per convenzione si può scegliere $\theta \in [0, 2\pi[$), mentre se $z = \mathbf{0}$ l'argomento è indeterminato.



Il numero complesso $z=1+i=\sqrt{2}(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}),$ con modulo $|z|=\sqrt{2}$ e argomento $\theta=\pi/4.$

La forma trigonometrica è particolarmente conveniente per esprimere prodotti di numeri complessi. Se $z_1 = |z_1|(\cos\theta_1 + i\sin\theta_1)$ e $z_2 = |z_2|(\cos\theta_2 + i\sin\theta_2)$, allora

$$z_1 z_2 = |z_1 z_2|(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)).$$

In particolare,

$$z^{n} = |z|^{n}(\cos(n\theta) + i\sin(n\theta)).$$

Una ragione per introdurre i numeri complessi è che sono un campo algebricamente chiuso: tutte le radici di un qualunque polinomio a coefficienti complessi appartengono a C.

Teorema Fondamentale dell'Algebra. Un'equazione polinomiale di grado n a coefficienti complessi

$$a_0 + a_1 z + \ldots + a_n z^n = 0, \quad a_i \in \mathbf{C}, \ i = 1, \ldots n,$$

ha esattamente n radici complesse.

Esempio. Le radici n-sime di un numero complesso.

Per il Teorema Fondamentale dell'Algebra, per ogni $a_0 \in \mathbb{C}$ non nullo, l'equazione

$$z^n = a_0 \tag{**}$$

ha esattamente n radici in \mathbf{C} . Se scriviamo $z = |z|(\cos \theta + i \sin \theta)$ e $a_0 = |a_0|(\cos \phi_0 + i \sin \phi_0)$, l'equazione (**) diventa

$$|z|^n(\cos n\theta + i\sin n\theta) = |a_0|(\cos \phi_0 + i\sin \phi_0)$$

da cui si ricava $|z| = \sqrt[n]{|a_0|}$ ed $n\theta = \phi_0 + 2\pi k$, per $k \in \mathbf{Z}$. Al variare di $k \in \mathbf{Z}$ ci sono in realtà solo n angoli che danno luogo a numeri complessi distinti. Essi sono $\theta_i = \frac{\phi}{n} + \frac{2\pi k}{n}$, per $k = 0, 1, \dots, n-1$. Le n radici dell'equazione (**) sono dunque

$$z_k = \sqrt[n]{|a_0|}(\cos(\frac{\phi}{n} + \frac{2\pi k}{n}) + i\sin(\frac{\phi}{n} + \frac{2\pi k}{n})), \quad k = 0, 1, \dots, n - 1.$$

Esempio. Le radici dell'equazione $z^4 = 4$ sono:

$$z_1 = \sqrt{2}, \quad z_2 = \sqrt{2}(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}) = i\sqrt{2},$$

$$z_3 = \sqrt{2}(\cos \pi + i \sin \pi) = -\sqrt{2}, \quad z_4 = \sqrt{2}(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2}) = -i\sqrt{2}.$$

Esempio. Le radici dell'equazione $z^2 + 3iz + 4 = 0$ sono (usando la formula risolutiva delle equazioni di secondo grado)

$$z_{1,2} = \frac{-3i + \sqrt{-25}}{2} = \frac{-3i \pm 5i}{2} = -4i, i.$$

Esempio. Le radici dell'equazione $z^2+2z+i=0$ sono (usando la formula risolutiva delle equazioni di secondo grado) $z_1=-1+w_1$ e $z_2=-1+w_2$, dove

$$w_1 = \sqrt[4]{2}(\cos\frac{-\pi}{8} + i\sin\frac{-\pi}{8}), \quad w_2 = \sqrt[4]{2}(\cos\frac{7\pi}{8} + i\sin\frac{7\pi}{8})$$

sono le due radici dell'equazione $w^2 = 1 - i$.

Dal Teorema Fondamentale dell'Algebra segue che un polinomio a coefficienti complessi è completamente riducibile su C:

Corollario 1. Un polinomio di grado n a coefficienti complessi $p(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_1z + a_0$ si decompone in modo unico (a meno dell'ordine dei fattori) nel prodotto di n polinomi di grado 1 a coefficienti complessi

$$p(z) = (z - \alpha_1)(z - \alpha_2) \dots (z - \alpha_n),$$

dove $\alpha_1, \ldots, \alpha_n$ sono le radici di p.

Consideriamo adesso un polinomio di grado n a coefficienti reali

$$p(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0, \qquad a_i \in \mathbf{R}.$$

In questo caso particolare, vale il seguente fatto:

• Se α è una radice di p, allora anche $\overline{\alpha}$ lo è.

Infatti, se $\alpha^n + a_{n-1}\alpha^{n-1} + \ldots + a_1\alpha + a_0 = 0$, coniugando si trova

$$\overline{\alpha}^n + \overline{a}_{n-1}\overline{\alpha}^{n-1} + \ldots + \overline{a}_1\overline{\alpha} + \overline{a}_0 = \overline{\alpha}^n + a_{n-1}\overline{\alpha}^{n-1} + \ldots + a_1\overline{\alpha} + a_0 = 0.$$

Dunque anche $\overline{\alpha}$ è radice di p.

Da questo fatto segue per esempio che un polinomio a coefficienti reali di grado dispari ha almeno una radice reale.

Corollario 2. Un polinomio a coefficienti reali di grado n si decompone in modo unico (a meno dell'ordine dei fattori) nel prodotto di polinomi di grado 1 e di grado 2 a coefficienti reali.

Dimostrazione. Per il teorema fondamentale dell'algebra, p ha n radici in \mathbf{C} : un certo numero di esse saranno a due a due complesse coniugate $\beta_1, \overline{\beta}_1, \dots, \beta_k, \overline{\beta}_k \in$, altre saranno possibilmente reali $\lambda_1, \dots, \lambda_h$. A partire dalla decomposizione del polinomio su \mathbf{C} , troviamo

$$(z - \beta_1)(z - \overline{\beta}_1) \dots (z - \beta_k)(z - \overline{\beta}_k)(z - \lambda_1) \dots (z - \lambda_h) =$$

$$= (z^2 - 2\operatorname{Re}\beta_1 z + |\beta_1|^2) \dots (z^2 - 2\operatorname{Re}\beta_k z + |\beta_k|^2)(z - \lambda_1) \dots (z - \lambda_h),$$

che è proprio la decomposizione cercata.

Esercizi.

- 1. Siano z = 2 + 2i e w = 2i.
 - (i) Calcolare $(z-w)^2$, $2z^2+1/w$, $z^{-1}+\overline{w}$, $|z+3w|^2$. Dare la risposta nella forma a+bi, $a,b\in\mathbf{R}$.
 - (ii) Calcolare la parte reale "Re" e la parte immaginaria "Im" di zw, z^{-1} e \overline{w}^2 .
 - (iii) Calcolare Arg(z), Arg(zw) ed $Arg(z^2)$.
- 2. Sia

$$z = \frac{1}{2} + i\frac{1}{2}\sqrt{3}.$$

- (i) Calcolare Arg(z), |z|, $z^2 e z^3$.
- (ii) Calcolare $z^2 z + 1$.
- 3. Determinare i numeri complessi (fare un disegno) tali che
 - (i) $z = -\overline{z}$,
 - (ii) Arg(z) = 0,
 - (iii) |z| = 2,
 - (iv) $|z| = \overline{z}$.
- 4. Dimostrare che per ogni $\varphi \in \mathbf{R}$:

$$\cos(5\varphi) = \cos^5(\varphi) - 10\cos^3(\varphi)\sin^2(\varphi) + 5\cos(\varphi)\sin^4(\varphi),$$

$$\sin(5\varphi) = 5\cos^4(\varphi)\sin(\varphi) - 10\cos^2(\varphi)\sin^3(\varphi) + \sin^5(\varphi).$$

- 5. Sia $z \in \mathbf{C}$.
 - (i) Far vedere che $\text{Re}(z)=(z+\overline{z})/2$ e $\text{Im}(z)=(z-\overline{z})/2i$. Supponiamo adesso che $z\neq 0$.
 - (ii) Calcolare $|z/\overline{z}|$.
 - (iii) Sia $\varphi = \text{Arg}(z)$. Chi è l'argomento di 1/z? E di z/\overline{z} ?