- 1. Sia data l'applicazione $F: \mathbf{R}^2 \to \mathbf{R}^2$, definita da $F(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) = \begin{pmatrix} x_1 + 2x_2 \\ x_1 \end{pmatrix}$.
 - (i) Usando la definizione, determinare se F è un'applicazione lineare.
 - (ii) Calcolare $F(\begin{pmatrix} 0 \\ 0 \end{pmatrix})$. Calcolare $F(\begin{pmatrix} 1 \\ 1 \end{pmatrix})$.
 - (iii) Determinare l'immagine tramite F della retta per l'origine span $\left\{ \begin{pmatrix} 1\\1 \end{pmatrix} \right\}$.
- 2. Sia data l'applicazione $F: \mathbf{R}^2 \to \mathbf{R}^2$, definita da $F(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) = \begin{pmatrix} x_1 + 2x_2 + 1 \\ x_1 + 1 \end{pmatrix}$.
 - (i) Usando la definizione, determinare se F è un'applicazione lineare.
 - (ii) Calcolare $F(\begin{pmatrix} 0 \\ 0 \end{pmatrix})$. Calcolare $F(\begin{pmatrix} 1 \\ 1 \end{pmatrix})$, $3F(\begin{pmatrix} 1 \\ 1 \end{pmatrix})$, $F(\begin{pmatrix} 3 \\ 3 \end{pmatrix})$. Come si conciliano questi risultati con quanto trovato al punto (i)?
- 3. Sia data l'applicazione $F: \mathbf{R}^3 \to \mathbf{R}^2$, definita da $F(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}) = \begin{pmatrix} 3x_1 x_2 \\ x_1 \end{pmatrix}$.
 - (i) Usando la definizione, verificare che F è un'applicazione lineare.
 - (ii) È vero che $F\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = M \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, per $M = \begin{pmatrix} 3 & -1 \\ 1 & 0 \end{pmatrix}$?
- 4. Sia $L \colon \mathbf{R}^n \to \mathbf{R}$ un polinomio omogeneo di primo grado

$$L\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = a_1 x_1 + a_2 x_2 + \ldots + a_n x_n.$$

Verificare che L è lineare.

- 5. Sia data l'applicazione $F: \mathbf{R}^3 \to \mathbf{R}^3$, definita da $F\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 x_2 \\ x_2 \\ 0 \end{pmatrix}$.
 - (i) Usando la definizione, verificare che F è un'applicazione lineare.
 - (ii) Calcolare ker F, il nucleo di F (esibirne una base).
 - (iii) Calcolare $F(\mathbf{R}^3)$, l'immagine di F (esibirne una base).
 - (iv) Dire se F è iniettiva o suriettiva.
- 6. Sia data l'applicazione lineare $F: \mathbf{R}^3 \to \mathbf{R}^3$, definita da $F(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
 - (i) Calcolare $\ker F$, il nucleo di F (esibirne una base).
 - (ii) Calcolare $F(\mathbf{R}^3)$, l'immagine di F.
 - (iii) Cosa fa questa applicazione?
- 7. Sia data l'applicazione lineare $F: \mathbf{R}^3 \to \mathbf{R}^3$, definita da $F(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.

- (i) Calcolare $F(\begin{pmatrix} 1\\1\\6 \end{pmatrix})$ e $F(\begin{pmatrix} 3\\1\\7 \end{pmatrix})$.
- (ii) Calcolare $\ker F$, il nucleo di F (esibirne una base).
- (iii) Calcolare $F(\mathbf{R}^3)$, l'immagine di F (esibirne una base).
- (iv) Cosa fa questa applicazione?
- 8. Sia data l'applicazione lineare $F: \mathbf{R}^3 \to \mathbf{R}^4$, definita da $F\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 0 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.
 - (i) Calcolare $\ker F$, il nucleo di F (esibirne una base).
 - (ii) Calcolare $F(\mathbf{R}^3)$, l'immagine di F (esibirne una base).
 - (iii) Dire se F è iniettiva o suriettiva.
 - (iv) Calcolare F(U), l'immagine tramite F del sottospazio $U = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbf{R}^3 \mid x_1 + x_2 = 0 \}$. Che dimensione ha?
 - (v) Determinare la dimensione di $U \cap \ker F$.
- 9. Sia data l'applicazione lineare $F: \mathbf{R}^4 \to \mathbf{R}^2$ definita da $F\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$.
 - (i) Calcolare $\ker F$, il nucleo di F (esibirne una base).
 - (ii) Calcolare $F(\mathbf{R}^4)$, l'immagine di F (esibirne una base).
 - (iii) Dire se F è iniettiva o suriettiva.
 - (iv) Calcolare l'immagine tramite F del sottospazio $U = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbf{R}^4 \mid \begin{cases} x_1 + x_3 = 0 \\ x_2 x_4 = 0 \end{cases} \}.$
 - (v) Determinare la dimensione di $U \cap \ker F$.
- 10. Sia $F: \mathbf{R}^4 \to \mathbf{R}^2$ l'applicazione lineare dell'esercizio 9 e sia $G: \mathbf{R}^2 \to \mathbf{R}^3$ l'applicazione lineare definita da $G(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) = \begin{pmatrix} x_1 + 2x_2 \\ 0 \\ -x_2 \end{pmatrix}$.
 - (i) Scrivere la formula generale di $G \circ F$.
 - (ii) Calcolare $G \circ F\left(\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}\right)$.
 - (iii) Calcolare il nucleo ker F e l'immagine $F(\mathbf{R}^4)$.
 - (iv) Calcolare il nucleo $\ker(G \circ F)$ e l'immagine $G \circ F(\mathbf{R}^4)$.
 - (v) Verificare che il nucleo di F è contenuto nel nucleo di $G \circ F$.
- 11. Sia data l'applicazione lineare

$$L_M: \mathbf{R}^4 \to \mathbf{R}^2, \quad X \mapsto MX, \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \quad M = \begin{pmatrix} 1 & 0 & 4 & 2 \\ 1 & -1 & 0 & 2 \end{pmatrix}.$$

- (i) Determinare le formule generali per L_M .
- (ii) Determinare $\ker L_M$, il nucleo di L_M (esibirne una base).
- (iii) Determinare $L_M(\mathbf{R}^4)$, l'immagine di L_M (esibirne una base).
- (iv) Determinare l'insieme $A = \{X \in \mathbf{R}^4 \mid L_M(X) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}.$
- 12. Sia data l'applicazione lineare

$$L_M: \mathbf{R}^3 \to \mathbf{R}^3, \quad X \mapsto MX, \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

- (i) Determinare le formule generali per L_M .
- (ii) Determinare $\ker L_M$, il nucleo di L_M (esibirne una base).
- (iii) Determinare $L_M(\mathbf{R}^3)$, l'immagine di L_M (esibirne una base).
- (iv) Dire se L_M è iniettiva o suriettiva.
- (v) Determinare l'insieme $A = \{X \in \mathbf{R}^3 \mid L_M(X) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \}.$ (vi) Determinare l'insieme $A = \{X \in \mathbf{R}^3 \mid L_M(X) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \}.$
- (vii) Sia $U = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbf{R}^3 \mid x_3 = 0 \}$. Determinare l'immagine di U tramite L_M (esibirne una
 - 13. Sia $L: V \to W$ un'applicazione lineare fra spazi vettoriali.
 - (i) Verificare che dim $L(V) \leq \dim V$ e che dim $L(V) < \dim V$ se e solo se L non è iniettiva.
 - (ii) Verificare che se dim $W < \dim V$, allora L non può essere iniettiva.
 - (iii) Verificare che se $\dim V < \dim W$, allora L non può essere suriettiva.
 - 14. Costruire esplicitamente una applicazione lineare $L: \mathbf{R}^3 \to \mathbf{R}^3$ con dim ker L=1, una applicazione lineare $L: \mathbb{R}^3 \to \mathbb{R}^3$ con dim ker L = 2 e una applicazione lineare $L: \mathbb{R}^3 \to \mathbb{R}^3$ con dim ker L=3. Che dimensione ha $L(\mathbf{R}^3)$ in ognuno dei vari casi?
- 15. Sia $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \in \mathbf{R}^3$ e sia $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ un generico vettore di \mathbf{R}^3 .
 - (a) Determinare la formula generale per la proiezione ortogonale $\pi_{\mathbf{v}}(X)$ di un vettore X su \mathbf{v} .
 - (b) Verificare che si tratta di un'applicazione lineare.
 - (c) Determinare il nucleo e l'immagine di $\pi_{\mathbf{v}}$, esibendone una base.
 - (d) Dare un'interpretazione geometrica del risultato.
- 16. Sia $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \in \mathbf{R}^3$ e sia $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ un generico vettore di \mathbf{R}^3 .
 - (a) Sia $L: \mathbf{R}^3 \to \mathbf{R}^3$ l'applicazione definita da $L(X) = X \pi_{\mathbf{v}}(X)$.
 - (b) Scrivere la formula generale per L e verificare che si tratta di un'applicazione lineare.
 - (c) Determinare il nucleo e l'immagine di L, esibendone una base.
 - (d) Dare un'interpretazione geometrica del risultato.