- 1. Scrivere \mathbb{R}^2 come span di opportuni vettori in tre modi diversi (aiutarsi con dei disegni).
- 2. Scrivere \mathbb{R}^3 come span di opportuni vettori in tre modi diversi (aiutarsi con dei disegni).
- 3. Sia dato il sottoinsieme $S = \{ \begin{pmatrix} a \\ 2a \\ 3a+b \end{pmatrix} \in \mathbf{R}^3 \mid a,b \in \mathbf{R} \}$ di \mathbf{R}^3 .
 - (a) Determinare se i vettori $A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 4 \\ 6 \end{pmatrix}$, $C = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$ appartengono ad S.
 - (b) Esibire tre elementi di S.
 - (c) Usando la definizione, dimostrare che S è un sottospazio vettoriale di \mathbb{R}^3 .
 - (d) Determinare dei generatori di S, ossia scrivere S come span di opportuni vettori.
- 4. Sia $M(2,2,\mathbf{R})$ lo spazio vettoriale delle matrici 2×2 a coefficienti reali. Determinare generatori di $M(2,2,\mathbf{R})$, ossia scrivere $M(2,2,\mathbf{R})$ come span di opportune matrici.
- 5. Sia dato il sottoinsieme $S = \{M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(2, 2, \mathbf{R}) \mid b + 2c = 0\}$ dello spazio vettoriale delle matrici 2×2 a coefficienti reali.
 - (a) Determinare se le matrici $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ appartengono ad S.
 - (b) Usando la definizione, dimostrare che S è un sottospazio vettoriale di $M(2,2,\mathbf{R})$.
 - (c) Determinare dei generatori di S, ossia scrivere S come span di opportune matrici.
- 6. Dato il sistema lineare omogeneo in 4 variabili $\begin{cases} x_1 2x_4 = 0 \\ x_2 + x_3 x_4 = 0 \end{cases}$, scrivere le soluzioni come span di opportuni vettori di \mathbf{R}^4 .
- 7. Esibire tre coppie di vettori linearmente indipendenti di \mathbb{R}^2 .
- 8. Esibire tre coppie e tre terne di vettori linearmente indipendenti di \mathbb{R}^3 .
- 8. Determinare se i vettori $A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 4 \\ 6 \end{pmatrix}$, $C = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$, $D = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$ sono linearmente indipendenti. Se non lo sono, sceglierne un sottoinsieme massimale formato da elementi linearmente indipendenti.
- 10. Date le matrici $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$, determinare se sono linearmente indipendenti.
- 11. Sia V uno spazio vettoriale e siano $\mathbf{u}, \mathbf{v}, \mathbf{w}$ vettori linearmente indipendenti in V. Determinare se i vettori $\mathbf{u} + \mathbf{v}, 3\mathbf{v}, \mathbf{w} + \mathbf{v} + \mathbf{u}$ sono linearmente indipendenti (suggerimento: usare la definizione).