Nei seguenti esercizi si consideri fissato una volta per tutte un riferimento cartesiano ortogonale, RC(O, E) per \mathbb{R}^n , con coordinate cartesiane (x_1, x_2, \dots, x_n) .

- 1. Sia $\mathbf{v} = (-1, -1, -1) \in \mathbf{R}^3$.
 - (i) Trovare le formule per la rotazione $R_{\pi/2,\mathbf{v}}$ di angolo $\pi/2$ attorno al vettore \mathbf{v} ;
 - (ii) Sia l la retta di equazioni parametriche

$$\mathbf{x} = (1, -1, 0) + t(2, 1, 1), \ t \in \mathbf{R}.$$

Calcolare le equazioni parametriche della retta che si ottiene applicando $R_{\pi/2,\mathbf{v}}$ a l.

- 2. Sia $\mathbf{v} = (-1, -1, -1) \in \mathbf{R}^3$.
 - (i) Trovare le formule per la rotazione $R_{-\pi/4,\mathbf{v}}$ di un angolo $-\pi/4$ attorno al vettore \mathbf{v} ;
 - (ii) Sia Π il piano di equazione cartesiana

$$x_1 + x_2 = 7.$$

Calcolare le equazioni parametriche del piano che si ottiene applicando $R_{-\pi/4,\mathbf{v}}$ a Π .

- 3. Sia π il piano di equazione cartesiana $x_1 + 2x_2 = 0$.
 - (i) Calcolare le formule di riflessione rispetto a π ;
 - (ii) calcolare le immagini dei punti (0,0,0) e (-1,1,-1);
 - (iii) calcolare l'immagine della retta di equazioni parametriche

$$(5,0,0)+t(1,0,-1), t \in \mathbf{R}.$$

4. Sia K il cubo in \mathbb{R}^3 di vertici:

$$(1,1,1), (1,-1,1), (-1,1,1), (-1,-1,1),$$

 $(1,1,-1), (1,-1,-1), (-1,1,-1), (-1,-1,-1).$

- (i) Determinare l'immagine di K dopo la rotazione $R_{\pi/2}$ attorno ad \mathbf{e}_3 ;
- (ii) Determinare l'immagine di K dopo la rotazione $R_{\pi/2}$ attorno ad \mathbf{e}_1 ;
- (iii) Determinare l'immagine di K dopo la rotazione $R_{\pi/2}$ attorno a $\mathbf{v} = -\mathbf{e}_1$;
- (iv) Quali rotazioni mandano il cubo in se stesso?
- 5. Sia T l'operatore autoaggiunto di ${\bf R}^4$ definito, rispetto alla base canonica, dalla matrice simmetrica

$$A := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

- (i) Scrivere l'equazione della forma quadratica Q associata a T.
- (ii) Utilizzando il teorema Spettrale degli operatori autoaggiunti, diagonalizzare A determinando la base ortonormale di autovettori di A in cui Q risulta essere una forma quadratica diagonale.
- (iii) Dedurre la forma canonica di Sylvester di Q, determinando esplicitamente la segnatura di Q.