Nell'esercizio 1, si consideri fissato una volta per tutte un riferimento cartesiano ortogonale, -RC(O, E) per \mathbb{R}^2 , con coordinate cartesiane (x_1, x_2) , mentre negli altri esercizi si consideri fissato una volta per tutte un riferimento cartesiano ortogonale RC(O, E) per \mathbb{R}^3 con coordinate cartesiane (x_1, x_2, x_3) .

- 1. Siano r_1 e r_2 due rette passanti ambedue per il punto $p_0 = (2, -1)$ e rispettivamente per $q_1 = (18/5, 1/5)$ la prima e per $q_2 = (2, 1)$ la seconda. Assumiamo che tali rette siano tangenti ad una circonferenza \mathbf{C} rispettivamente in q_1 ed in q_2 .
 - (i) Determinare il centro c, il raggio r e l'equazione cartesiana di C;
 - (ii) Disegnare la circonferenza C.
 - (iii) Presi infine $\mathbf{v} = (1, 2)$ e $\mathbf{w} = (-1, -1)$, due vettori di \mathbf{R}^2 , calcolare l'orientazione della coppia ordinata $\{\mathbf{v}, \mathbf{w}\}$, i.e. $Or(\mathbf{v}, \mathbf{w})$;
- 2. Dati i vettori

$$\mathbf{x} = (0, 1, 0), \, \mathbf{y} = (1, 1, 1), \, \mathbf{z} = (2, 0, 1)$$

in \mathbb{R}^3 ,

- (i) calcolare il volume del parallelepipedo avente come spigoli i tre vettori dati;
- (ii) calcolare l'orientazione della terna ordinata $\{y, x, z\}$.
- 3. Siano assegnati in \mathbb{R}^3 la retta

$$r: x - y = y + 2z = 0,$$

ed il piano

$$\Pi: x + z = 0.$$

Calcolare le equazioni cartesiane e parametriche della retta r' che é la proiezione ortogonale di r sul piano Π .

4. Sono assegnate in \mathbb{R}^3 la retta

$$r: x-y-1=z=0,$$

ed il piano

$$\Pi: x + 2y - z = 0.$$

- (i) Determinare il piano Λ contenente r e normale a Π ;
- (ii) Determinare la retta s, proiezione ortogonale di r su Π ;
- (iii) Determinare l'angolo convesso $\theta(r,s)$ tra r ed s;
- 5. Dati i tre punti

$$A = (0, 1, 0), B = (1, 1, 1), C = (2, 0, 1)$$

in \mathbb{R}^3

- (i) Verificare che i tre punti non sono allineati;
- (ii) Scrivere le equazioni cartesiane dell'unica circonferenza passante per i 3 punti.