
Pagerank Rome, december 2019

The Google matrix. Let P1, . . . , Pn denote the web pages on the internet. For each i let
xi denote the ‘importance’ of page Pi. This is a positive real number. A page is considered
important if many important pages link to it. However, a link from Pj to Pi is weighted
with the total number of links nj that page Pj contains. This leads to the equations

xi =
∑

Pj→Pi

1

nj
xj , for every i = 1, 2, . . . , n.

Here the sum runs over the web pages Pj that contain a link to page Pi. Google’s web
crawlers determine the numbers nj for each page Aj and keep the information up to date.
Google’s pagerank algorithm regularly determines the vector (x1, x2, . . . , xn) of importance
scores. We explain why the vector is unique and indicate how it can be computed.

The relations above can be expressed by saying that the vector with coordinates xi is
an eigenvector with eigenvalue 1 of the n× n-matrix

A =

 a11 . . . a1n
...

. . .
...

an1 · · · ann


given by

aji =

{
1/nj , when there is a link from page Pj to page Pi;
0, otherwise.

Indeed, we have

A

 x1
...
xn

 =

 x1
...
xn

 .

If there is any link on page Pj at all, then the sum of the entries in the j-th column of A
is equal to 1. However, if there are no links from page Pj to other pages, this definition
implies that the j-th column of A contains only zeroes. Pages without links to other pages
are very common. They are the so-called ‘dangling nodes’ of the graph of the internet.
Their existence prevents the matrix from being stochastic. In order to get rid of the zero
columns there are several strategies, one of which is to replace each of them by the vector
all whose entries are equal to 1/n.

Now the sums of the entries in each column of A are 1, but there still may be many zero
entries. In order to eliminate those, we take a convex combination of M and a ‘damping’
matrix, which assigns the same importance to every page on the internet. In other words,
we replace A by

M = (1− ε)A+ εE,

where E denotes the matrix all of whose entries are equal to 1/n and ε is in the inter-
val (0, 1). In their original paper, Brin and Page suggest to take ε = 0, 15.
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Therefore the following theory applies . Let

M =

m11 . . . m1n
...

. . .
...

mn1 · · · mnn


be a stochastic n × n-matrix. This means that the entries mij are positive real numbers
and that the entries in each column sum up to 1.

n∑
i=1

mik = 1, for k = 1, . . . , n.

For a vector w ∈ Rn we write ||w|| for the sum of the absolute values of the coordinates
of w.

Theorem. Let f : Rn −→ Rn be the linear map given by f(x) = M · x. Let W be the
subspace of Rn consisting of the vectors with sum of their coordinates equal to 0. Then
(a) f preserves the sum of the coordinates of x ∈ Rn. In particular, f maps W to itself.
(b) λ = 1 is an eigenvalue of f . The corresponding eigenspace V has dimension 1. The

coordinates of each non-zero vector in V are all non-zero and have the same sign.
(c) The vector space Rn is a direct sum of V and W .
(d) There is a constant c with 0 < c < 1 and depending only on M for which

||f(x)|| ≤ c||x||, for all x ∈W .

Proof. (a) Writing xk for the coordinates of x, the i-th coordinate of M(x) is
∑n

k=1mikxk.
Their sum is

n∑
i=1

n∑
k=1

mikxk =
n∑

k=1

n∑
i=1

mikxk =
n∑

k=1

xk.

(b) Since λ = 1 is an eigenvalue of the transpose of M (with eigenvector (1, 1, . . . , 1)), it is
also an eigenvalue of the matrix M . Let v ∈ Rn denote an eigenvector. Writing vk for the
coordinates of v, we have vi =

∑n
k=1mikvk for i = 1, . . . , n. If the signs of the coordinates

vi are not all the same or if some of them are zero, the fact that all mij are positive implies
that |vi| <

∑n
k=1mij |vk|. However, this implies

n∑
i=1

|vi| <
n∑

i=1

n∑
k=1

mik|vk| =
n∑

k=1

n∑
i=1

mik|vk| =
n∑

k=1

|vk|.

Contradiction. Therefore the signs of the vk are all the same. It follows that v 6∈ W , so
that the intersection of the eigenspace V with W is trivial. Since V 6= {0}, Grassmann
implies that V has dimension 1 and hence that V +W = Rn. This proves (b) and (c).

(d) Let x ∈W . Then the i-th coordinate of f(x) is
∑

kmikxk. Writing εi for the sign
of
∑

kmikxk, we have that

||f(x)|| =
n∑

i=1

εi

n∑
k=1

mikxk =

n∑
k=1

(

n∑
i=1

εimik)xk.
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Since f(x) is in W , its coordinates cannot all have the same sign εi. Since
∑n

i=1mik = 0,
it follows that the absolute value of

∑n
i=1 εimik is at most 1−2µ, where µ is the minimum

of all mij . Note that 0 < µ ≤ 1/n. Put c = 1− 2µ. Then we have

||f(x)|| ≤ c
n∑

k=1

|xk| = c||x||,

as required. Note that 0 < c < 1 unless, we have n = 2 and µ = 1/2, in which case c = 0
and all entries of the 2 × 2-matrix are equal to 1/2. If this happens, we have f(W ) = 0
and the statement of part (d) is trivially true for any choice of c.

Corollary. Let f be as in the theorem. Let x ∈ Rn but x 6∈W . Then the sequence fk(x)
converges to a non-zero multiple of the eigenvector v of the previous theorem.

Proof. By part (c) of the theorem, Rn is the direct sum of W and the eigenspace V =
Span(v). Therefore x = αv + βw for some w ∈ W and α, β ∈ R. Since x 6∈ W , the
coefficient α is not zero. Since fk(v) = v we have

fk(x)− αv = αfk(v) + βfk(w)− αv = βfk(w), for every k > 0.

By part (d) of the theorem we have that ||fk(x) − αv || ≤ βck||w||. Since 0 < c < 1, this
tends to zero as k →∞.

Example. The matrix

A =


0 0 0 0 1/3 0

1/2 0 0 0 0 0
0 1/2 0 0 0 0
0 0 1/2 0 1/3 0

1/2 1/2 1/2 0 0 1
0 0 0 0 1/3 0


is associated to an internet consisting of six pages. The fourth page is a dangling node.
Since almost every page links to page 5, that page looks the most important. On the other
hand page 3 seems unimportant. Only page 2, which does not look very important itself,
links to it. We do the computation to see whether this is what the pagerank algorithm
finds. We replace the zeroes in the fourth column by 1/n = 1/6 and get

A =


0 0 0 1/6 1/3 0

1/2 0 0 1/6 0 0
0 1/2 0 1/6 0 0
0 0 1/2 1/6 1/3 0

1/2 1/2 1/2 1/6 0 1
0 0 0 1/6 1/3 0


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Since some entries of A are zero, the conditions of the theorem are not satisfied. Neverthe-
less we find a unique eigenvector (x1, x2, x3, x4, x5, x6) of importance scores with positive
coordinates:

(0.142, 0.111, 0.098, 0.184, 0.321, 0.142).

Using the damping matrix E hardly changes the outcome:

(0.144, 0.103, 0.082, 0.185, 0.340, 0.144).

As expected, page 5 is considered to be the most important, while page 3 has the lowest
score. Computing Ak(x) with x the vector all of whose coordinates are equal to 1/6 yields
for k = 10 already a very accurate approximation to the eigenvector:

(0.145, 0.102, 0.082, 0.185, 0.338, 0.145)
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