1. Sia
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{R}^3 : x - y + 2z = 0 \right\}$$
, e siano $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ e $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \right\}$ in \mathbf{R}^3 .

- (a) Dimostrare che \mathbf{v}_1 e \mathbf{v}_2 formano una base di V.
- (b) Sia $\mathbf{w} = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$. Verificare che $\mathbf{w} \in V$ e determinare le coordinate di \mathbf{w} rispetto alla base \mathbf{v}_1 , \mathbf{v}_2 . In altre parole, trovare $\xi_1, \xi_2 \in \mathbf{R}$ tali che $\mathbf{w} = \xi_1 \mathbf{v}_1 + \xi_2 \mathbf{v}_2$.
- 2. Siano

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \qquad \mathbf{v}_2 = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} \in \mathbf{R}^3;$$

- (a) Far vedere che $\{\mathbf{v}_1, \mathbf{v}_2\}$ sono vettori indipendenti.
- (b) Esibire un terzo vettore in \mathbb{R}^3 tale che i vettori $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ formano una base di \mathbb{R}^3 .
- 3. Quali applicazioni sono lineari?
 - (a) $g: \mathbf{R} \longrightarrow \mathbf{R}$ data da g(x) = |x| per ogni $x \in \mathbf{R}$.
 - (b) $f: \mathbf{R}^n \longrightarrow \mathbf{R}^n$ data da

$$f\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ \vdots \\ x_n \\ x_1 \end{pmatrix}.$$

4. Calcolare le dimensioni di $\ker(f)$ ed $\operatorname{im}(f)$ per l'applicazione lineare $f: \mathbf{R}^4 \longrightarrow \mathbf{R}^3$ data da

$$f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 + 3x_2 - x_3 + 4x_4 \\ -x_2 - x_4 \\ -x_1 + 2x_2 - 4x_3 + x_4 \\ 2x_1 - x_2 + 5x_3 + x_4 \end{pmatrix}$$

5. Sia $W \subset \mathbf{R}^4$ il sottospazio dato da dato da

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbf{R}^4 : \left\{ \begin{array}{lcl} x_2 + x_3 & = & 0 \\ x_1 - x_4 & = & 0 \end{array} \right\}.$$

Esibire un secondo sottospazio $W' \subset \mathbf{R}^4$, tale che $W \cap W' = \{0\}$ e $W + W' = \mathbf{R}^4$.

- 6. Sia $\mathbf{R}[X]$ l'insieme dei polinomi nella variabile X.
 - (a) Verificare che $\mathbf{R}[X]$ con la solita somma e la solita moltiplicazione per i numeri reali, è uno spazio vettoriale.
 - (b) Dimostrare che la dimensione di $\mathbf{R}[X]$ è infinita. Sia $h: \mathbf{R}[X] \longrightarrow \mathbf{R}[X]$ data da $h(p) = \frac{dp}{dX}$ per $p \in \mathbf{R}[X]$.
 - (c) Calcolare $h(X^n)$ per ogni $n \geq 0$.
 - (d) Dimostrare che h è un'applicazione lineare e determinare $\ker(h)$ e $\operatorname{im}(h)$.