COGNOME *NOME*

Inserire le risposte negli spazi predisposti, accompagnandole con *spiegazioni chiare ed essenziali*. NON SI ACCETTANO RISPOSTE SCRITTE SU ALTRI FOGLI. Ogni esercizio vale 5 punti.

1. Dimostrare per induzione che $1+\frac{1}{2^2}+\ldots+\frac{1}{n^2}\leq 2-\frac{1}{n}$, per ogni numero naturale $n\geq 1$.

Per n = 1, l'enunciato è P(1): $1 \le 1$, ed è vero.

Facciamo vedere che dall'enunciato ennesimo $P(n): 1+\frac{1}{2^2}+\ldots+\frac{1}{n^2}\leq 2-\frac{1}{n}$, segue l'enunciato (n+1)-simo $P(n+1): 1+\frac{1}{2^2}+\ldots+\frac{1}{(n+1)^2}\leq 2-\frac{1}{n+1}$. Se P(n) è vero, abbiamo intanto la stima

$$1 + \frac{1}{2^2} + \ldots + \frac{1}{n^2} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{n} + \frac{1}{(n+1)^2}.$$

Se facciamo vedere che

$$2 - \frac{1}{n} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{n+1},\tag{*}$$

abbiamo dimostrato l'enunciato P(n+1). La disequazione (*) è equivalente a

$$-\frac{1}{n} + \frac{1}{(n+1)^2} \le -\frac{1}{n+1} \quad \Leftrightarrow \quad \frac{1}{(n+1)^2} \le \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)},$$

che è soddisfatta per ogni numero naturale $n \ge 1$. la dimostrazione è completa.

2. Sia $\mathbb{N} = \{1, 2, \ldots\}$ l'insieme dei numeri naturali e sia $\mathcal{P}(\mathbb{N})$ l'insieme delle parti di \mathbb{N} . Determinare un'applicazione iniettiva $F: \mathbb{N} \longrightarrow \mathcal{P}(\mathbb{N})$.

Per definizione, $\mathcal{P}(\mathbb{N})$ è l'insieme di tutti i sottoinsiemi di \mathbb{N}

$$\mathcal{P}(\mathbb{N}) = \{\{\emptyset\}, \{1\}, \{2\}, \dots, \{1, 2\}, \{1, 3\}, \dots\}\}$$

in particolare ha fra i suoi elementi tutti i sottoinsiemi della forma $\{n\}$, che consistono nel numero naturale n. L'applicazione

$$F: \mathbb{N} \longrightarrow \mathcal{P}(\mathbb{N}), \quad n \mapsto \{n\}$$

è un'applicazione con le proprietà richieste.

- 3. Sia X un insieme e sia $\mathcal{P}(X)$ l'insieme della parti di X. Si definisca la seguente relazione sull'insieme $\mathcal{P}(X)$: dati due sottoinsiemi $A, B \subset X$, si ha che $A \mathbf{R} B$ se e solo se $A \cap B \neq \emptyset$. Determinare se \mathbf{R} è: (a) riflessiva, (b) simmetrica, (c) antisimmetrica, (d) transitiva.
- (a) La relazione non è riflessiva: per $A=\emptyset$ non vale $A\mathbf{R}A$. (invece, per ogni $A\neq\emptyset$ vale $A\mathbf{R}A$ in quanto $A\cap A=A\neq\emptyset$).
- (b) La relazione è simmetrica: $A\mathbf{R}B$ implica $B\mathbf{R}A$, in quanto $A \cap B = B \cap A$ e dunque $A \cap B \neq \emptyset$ implica $B \cap A \neq \emptyset$.
- (c) La relazione non è antisimmetrica: $A\mathbf{R}B$ e $B\mathbf{R}A$ non implica A=B, in quanto $A\cap B\neq\emptyset$ non implica A=B.
- (d) La relazione non è transitiva: $A\mathbf{R}B$ e $B\mathbf{R}C$ non implica $A\mathbf{R}C$. In generale esistono infatti insiemi A, B, C con $A \cap B \neq \emptyset$, $B \cap C \neq \emptyset$, ma con $A \cap C = \emptyset$. (ad esempio $A = \{1, 2\}$, $B = \{2, 3\}$, $C = \{3, 4\}$).

(Nel caso in cui X ha un elemento solo, la relazione è sia antisimmetrica che transitiva).

- 4. Sull'insieme $X=\{2,3,4,6,24,72,48\}$, considerare la relazione d'ordine " \leq " così definita: $a\leq b$ quando a divide b.
 - (a) Determinare gli elementi massimali e minimali.

- (b) Esibire, se esistono, massimo e minimo assoluti.
- (c) Determinare i maggioranti di $\{4, 6, 24\}$ e, se esiste, $\sup(\{4, 6, 24\})$.
- (d) Determinare i minoranti di $\{4,6,24\}$ e, se esiste, $\inf(\{4,6,24\})$.
- (a) In X, ci sono due elementi massimali (48 e 72) e due elementi minimali (2 e 3).
- (b) Non ci sono né massimo né minimo assoluto in X.
- (c) Ci sono tre maggioranti di $\{4,6,24\}$, e sono dati da 48, 72 e 24; il sup. è 24 che è anche il massimo di $\{4,6,24\}$
- (d) C'è un minorante per {4,6,24}, dato da 2, ed è anche un inf., ma non un minimo.
- 5. Sia \mathbb{Z}_{91} l'anello delle classi resto (o classi di congruenza) modulo 91 e sia \mathbb{Z}_{91}^* il sottoinsieme delle classi che ammettono inverso moltiplicativo. Determinare se $\overline{7}$ e $\overline{8}$ appartengono a \mathbb{Z}_{91}^* ; in caso affermativo, calcolarne l'inverso in \mathbb{Z}_{91} .

Poiché $91 = 7 \times 13$ e $mcd(7,91) = 13 \neq 1$, la classe resto $\overline{7}$ non ammette inverso moltiplicativo in \mathbb{Z}_{91} e dunque non appartiene a \mathbb{Z}_{91}^* . Si ha invece mcd(8,91) = 1, e quindi $\overline{8} \in \mathbb{Z}_{91}^*$. Per calcolare l'inverso di $\overline{8}$, dobbiamo determinare un $x \in \mathbb{Z}$ tale che

$$8x + N91 = 1$$
, per qualche $N \in \mathbb{Z}$.

Tali interi x, N esistono perché mcd(8,91) = 1 e si possono calcolare con l'algoritmo euclideo:

$$\begin{aligned} 1 \cdot 91 + 0 \cdot 8 &= 91 \\ 0 \cdot 91 + 1 \cdot 8 &= 8 \\ 1 \cdot 91 + (-11) \cdot 8 &= 3, \quad 91 = 8 \cdot 11 + 3 \\ (-2) \cdot 91 + 23 \cdot 8 &= 2, \quad 8 = 3 \cdot 2 + 2 \\ 3 \cdot 91 + (-34) \cdot 8 &= 1, \quad 3 = 2 \cdot 1 + 1. \end{aligned}$$

Dal calcolo troviamo x = -34, per cui l'inverso cercato è

$$\overline{8}^{-1} = \overline{x} = \overline{57} \in \mathbb{Z}_{91}^*.$$

- 6. (a) Calcolare il resto della divisione per 3 e il resto della divisione per 5 del numero 8¹³.
 - (b) Calcolare il resto della divisione per 15 di 8¹³.
- (a) Calcolare il resto della divisione per 3 del numero 8¹³ equivale a calcolare

$$\overline{8^{13}} \equiv \overline{8}^{13} \equiv \overline{2}^{13}$$
 in \mathbb{Z}_3 .

Osserviamo che mcd(2,3)=1 e dunque $\overline{2}\in \mathbb{Z}_3^*$. Poiché \mathbb{Z}_3^* è un gruppo (moltipicativo) di cardinalità 2, per il teorema di Lagrange (o Piccolo Teorema di Fermat, visto che 3 è primo) si ha che $\overline{2}^2\equiv \overline{1}$ in \mathbb{Z}_3^* . Scrivendo $13=2\cdot 6+1$, troviamo

$$\overline{8^{13}} \equiv \overline{2}^{13} \equiv \overline{2}^{12} \overline{2} \equiv \overline{2}$$
 in \mathbb{Z}_3 .

(in questo caso semplice si vedeva anche direttamente che $\overline{2} \cdot \overline{2} \equiv \overline{1}$, in \mathbb{Z}_3 , etc...). Analogamente, calcolare il resto della divisione per 5 del numero 8^{13} equivale a calcolare

$$\overline{8^{13}} \equiv \overline{8}^{13} \equiv \overline{3}^{13}$$
 in \mathbb{Z}_5 .

Anche in questo caso, osserviamo che mcd(3,5)=1 e dunque $\overline{3}\in \mathbb{Z}_5^*$. Il gruppo \mathbb{Z}_5^* ha cardinalità 4 e, scrivendo $13=4\cdot 3+1$, troviamo

$$\overline{8^{13}} \equiv \overline{3}^{13} \equiv \overline{3}^{12} \overline{3} \equiv \overline{3}$$
 in \mathbb{Z}_{5} .

(b) Per calcolare il resto della divisione per 15 di 8^{13} , ricordiamo che per il Teorema Cinese del Resto il sistema di congruenze

$$\left\{ \begin{array}{ll} x \equiv 2 \mod 3 \\ x \equiv 3 \mod 5 \end{array} \right.$$

ha soluzioni in \mathbb{Z} e le soluzioni sono della forma $x=x_0+n15$, dove x_0 è una soluzione particolare del sistema ed $n\in\mathbb{Z}$. Questo significa che

$$\left\{ \begin{array}{ll} x \equiv 2 \mod 3 \\ x \equiv 3 \mod 5 \end{array} \right. \iff x \equiv x_0 \mod 15,$$

e $\overline{x}=\overline{x_0}\in \mathbb{Z}_{15}$ ci dà esattamente il resto cercato. Nel nostro caso, risolvendo il sistema per sostituzione, troviamo

$$x = 8 + 15n, \ n \in \mathbb{Z}, \qquad \overline{x} = \overline{8}.$$

Dunque il resto cercato è 8.