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INTRODUCTION

” Dualitas dualitatum
et omnia dualitas”

N. Barbecue, ”Scholia”

The most general notion of “symmetry” in mathematics is encoded in the notion of Hopf
algebra. Among Hopf algebras over a field, the commutative and the cocommutative ones
encode “geometrical” symmetries, in that they correspond, under some technical condi-
tions, to algebraic groups and to (restricted, if the ground field has positive characteristic)
Lie algebras respectively: in the first case the Hopf algebra is the algebra F[G] of regu-
lar functions over an algebraic group G, whereas in the second case it is the (restricted)
universal enveloping algebra U(g) (u(g) in the restricted case) of a (restricted) Lie algebra
g. A popular generalization of these two types of “geometrical symmetry” is given by
quantum groups: roughly, these are Hopf algebras H depending on a parameter A such
that setting 7 = 0 the Hopf algebra one gets is either of the type F[G] — hence H is a
quantized function algebra, in short QFA — or of the type U(g) or u(g) (according to the
characteristic of the ground field) — hence H is a quantized universal enveloping algebra,
in short QrUEA. When a QFA exists whose specialization (i.e. its “value” at h = 0) is
F[G], the algebraic group G inherits from this “quantization” a Poisson bracket, which
makes it into a Poisson (algebraic) group; similarly, if a QrUEA exists whose specialization
is U(g) or u(g), the (restricted) Lie algebra g inherits a Lie cobracket which makes it into
a Lie bialgebra. Then by Poisson group theory one has Poisson groups G* dual to G and a
Lie bialgebra g* dual to g, so other geometrical symmetries are related to the initial ones.

The dependence of a Hopf algebra on /A can be described as saying that it is defined over
aring R and h € R: so one is lead to dwell upon the category H.A of Hopf R-algebras
(maybe with some further conditions), and then raises three basic questions:

— (1) How can we produce quantum groups?

— (2) How can we characterize quantum groups (of either kind) within H.A?

— (3) What kind of relationship, if any, does exist between quantum groups over
mutually dual Poisson groups, or mutually dual Lie bialgebras?

A first answer to question (1) and (3) together is given by the so-called “quantum
duality principle”, which is known in literature with at least two formulations. One claims
that quantum function algebras associated to dual Poisson groups can be taken to be
dual — in the Hopf sense — to each other; and similarly for quantum enveloping algebras
(cf. [FRT1] and [Se]). The second one, formulated by Drinfeld in local terms (i.e., using
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formal groups — rather than algebraic groups — and complete topological Hopf algebras;
cf. [Dr], §7, and see [Gad] for a proof), provides a recipe to get, out of a QFA over G,
a QrUEA over g*, and, conversely, to get, out of a QrUEA over g, a QFA over G*.
More precisely, Drinfeld defines two functors, inverse to each other, from the category of
quantized universal enveloping algebras (in his sense) to the category of quantum formal
series Hopf algebras (Drinfeld’s analogue of QFAs) and viceversa, such that Up(g) —
F[|G*]] and Fy[[G]] — Ur(g*) (in his notation, where the subscript £ stands as a reminder
for “quantized” and the double square brackets stand for “formal series Hopf algebra”).

In this paper we provide a global version of the quantum duality principle which gives
a complete answer to questions (1) through (3). The key is to push as far as possible
Drinfeld’s original idea so to apply it to the category H.A of all Hopf algebras which are
torsion-free modules over some 1-dimensional domain (in short, 1dD), say R, and to do it
for each non-zero prime element h in R.

To be precise, we extend Drinfeld’s recipe so to define functors from H.A to itself. We
show that the image of these “generalized” Drinfeld’s functors is contained in a category
of quantum groups — one gives QFAs, the other QrUEAs — so we answer question (1).
Then, in the zero characteristic case, when restricted to quantum groups these functors
yield equivalences inverse to each other. Moreover these equivalences exchange the types of
quantum group — switching QFA with QrUEA — and the underlying Poisson symmetries
— interchanging G or g with G* or g*, thus solving (3). Other details enter the picture
to show that these functors endow H.A with sort of a (inner) “Galois’ correspondence”,
in which QFAs on one side and QrUEAs on the other side are the subcategories (in H.A)
of “fixed points” for the composition of both Drinfeld’s functors (in the suitable order):
in particular, this answers question (2). It is worth stressing that, since our “Drinfeld’s
functors” are defined for each non-trivial point (k) of Spec(R), for any such (k) and for
any H in ‘HA they yield two quantum groups, namely a QFA and a QrUEA, w.r.t. h itself.
Thus we have a method to get, out of any single H € HA, several quantum groups.

Therefore the “global” in the title is meant in several respects: geometrically, we consider
global objects (namely Poisson groups rather than Poisson formal groups, as in Drinfeld’s
approach); algebraically we consider quantum groups over any 1dD R, so there may be
several different “semiclassical limits” (=specialization) to consider, one for each non-trivial
point of the spectrum of R (whereas in Drinfeld’s context R = k[[%]] so one can specialise
only at & = 0); more generally, our recipe applies to any Hopf algebra, i.e. not only to
quantum groups; finally, the most part of our results are characteristic-free, i.e. they hold
not only in zero characteristic (as in Drinfeld’s case) but also in positive characteristic.

As a further outcome, this “global version” of the quantum duality principle opens the
way to formulate a “quantum duality principle for subgroups and homogeneous spaces”:
this is the subject of a separate paper (cf. [CG]).

A key, long-ranging application of our “global quantum duality principle” is the fol-
lowing. Take as R the polynomial ring R = k[A], where k is a field: then for any Hopf
algebra over k we have that H[h]:= R ®x H is a torsion-free Hopf R-algebra, hence we
can apply Drinfeld’s functors to it. The outcome of this procedure is the “crystal duality
principle”, whose statement strictly resembles that of the quantum duality principle: now
Hopf k—algebras are looked at instead of torsionless Hopf R-algebras, and quantum groups
are replaced by Hopf algebras with canonical filtrations such that the associated graded



Hopf algebra is either commutative or cocommutative. Correspondingly, we have a method
to associate to H a Poisson group G and a Lie bialgebra £ such that G is an affine space (as
an algebraic variety) and ¢ is graded (as a Lie bialgebra); in both cases, the “geometrical”
Hopf algebra can be attained — roughly — through a continuous 1-parameter deformation
process. This result can also be formulated in purely classical (i.e. “non-quantum”) terms
and proved by purely classical means. However, the approach via the global quantum
duality principle also yields further possibilities to deform H into other Hopf algebras of
geometrical type, which is out of reach of any classical approach.

The purpose of these notes is to illustrate the global quantum duality principle in some
detail through some relevant examples: some quantum groups — the standard quantization
of the Kostant-Kirillov structure on a Lie algebra (§4), the quantum semisimple groups
(85), the three dimensional quantum Euclidean group (§6), the quantum Heisenberg group,
and a special, far-reaching application, the “crystal duality principle” (§3). All details and
technicalities which are skipped in the present paper can be found in [Gab].

These notes are the written version of the author’s contribution to the conference “Ren-
contres Mathématiques de Glanon”, 6th edition (1-5 july 2002) held in Glanon (France).
The author’s heartily thanks the organizers — especially Gilles Halbout — for kindly
inviting him. Il remercie aussi tous les Glanonnets pour leur charmante hospitalité.

REFERENCES

[Bo] N. Bourbaki, Commutative Algebra, Springer & Verlag, New York-Heidelberg-Berlin-Tokyo, 1989.

[CG] N. Ciccoli, F. Gavarini, A quantum duality principle for subgroups and homogeneous spaces,
preprint.

[CP] V. Chari, A. Pressley, A guide to Quantum Groups, Cambridge University Press, Cambridge,
1994.

[DG] M. Demazure, P. Gabriel, Groupes Algébriques, I, North Holland, Amsterdam, 1970.

[DL] C. De Concini, V. Lyubashenko, Quantum Function Algebras at Roots of 1, Adv. Math. 108
(1994), 205-262.

[Dr] V. G. Drinfeld, Quantum groups, Proc. Intern. Congress of Math. (Berkeley, 1986), 1987, pp. 798—
820.

[EK] P. Etingof, D. Kazhdan, Quantization of Lie bialgebras, I, Selecta Math. (N.S.) 2 (1996), 1-41.

[FG] C. Frgnsdal, A. Galindo, The universal T—matriz, in: P. J. Sally jr., M. Flato, J. Lepowsky, N.
Reshetikhin, G. J. Zuckerman (eds.), Mathematical Aspects of Conformal and Topological Field
Theories and Quantum Groups, Cont. Math. 175 (1994), 73-88.

[FRT1] L. D. Faddeev, N. Yu. Reshetikhin, L. A. Takhtajan, Quantum groups, in: M. Kashiwara, T.
Kawai (eds.), Algebraic Analysis, (1989), Academic Press, Boston, 129-139.

[FRT2] , Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (19990), 193-225.
[Gal] F. Gavarini, Quantization of Poisson groups, Pac. Jour. Math. 186 (1998), 217—266.
[Ga2]

, Quantum function algebras as quantum enveloping algebras, Comm. Alg. 26 (1998),
1795-1818.

[Ga3] , Dual affine quantum groups, Math. Z. 234 (2000), 9-52.




, The quantum duality principle, Annales de I'Institut Fourier 52 (2002), 809-834.

, The global quantum duality principle: theory, examples, and applications, preprint

math.QA /0303019 (2003).

, The Crystal Duality Principle: from Hopf Algebras to Geometrical Symmetries, J. of
Algebra 285 (2005), 399-437.

, Presentation by Borel subalgebras and Chevalley generators for quantum enveloping al-
gebras, Proceedings of the Edinburgh Mathematical Society (2005), 17 pages, in press.

B. Huppert, N. Blackburn, Finite Groups. II, Grundlehren der Mathematischen Wissenschaften
243, Springer & Verlag, Berlin — New York, 1982.

S. Jennings, The structure of the group ring of a p—group over a modular field, Trans. Amer.
Math. Soc. 50 (1941), 175-185.

C. Kassel, V. Turaev, Biquantization of Lie bialgebras, Pac. Jour. Math. 195 (2000), 297—-369.

G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv.
Math. 70 (1988), 237—-249.

, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), 89-113.

Yu. I. Manin, Quantum Groups and Non-Commutative Geometry, Centre de Recherches Mathéma-
tiques, Université de Montreal, Montreal, 1988.

S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conference Series in
Mathematics 82, American Mathematical Society, Providence, RI, 1993.

D. S. Passman, The Algebraic Structure of Group Rings, Pure and Applied Mathematics, J. Wiley
& Sons, New York, 1977.

M. A. Semenov-Tian-Shansky, Poisson Lie groups, quantum duality principle, and the quantum
double, in: P. J. Sally jr., M. Flato, J. Lepowsky, N. Reshetikhin, G. J. Zuckerman (eds.), Mathe-
matical Aspects of Conformal and Topological Field Theories and Quantum Groups, Cont. Math.
175 (1994), 219-248.




