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INTRODUCTION

“Dualitas dualitatum
et omnia dualitas”

N. Barbecue, “Scholia”

The most general notion of “symmetry” in mathematics is encoded in the notion of Hopf
algebra. Among Hopf algebras H over a field, the commutative and the cocommutative
ones encode “geometrical” symmetries, in that they correspond, under some technical con-
ditions, to algebraic groups and to (restricted, if the ground field has positive characteristic)
Lie algebras respectively: in the first case H is the algebra F [G] of regular functions over
an algebraic group G, whereas in the second case it is the (restricted) universal envelop-
ing algebra U(g) (u(g) in the restricted case) of a (restricted) Lie algebra g . A popular
generalization of these two types of “geometrical symmetry” is given by quantum groups:
roughly, these are Hopf algebras H depending on a parameter ~ such that setting ~ = 0
the Hopf algebra one gets is either of the type F [G] — hence H is a quantized function
algebra, in short QFA — or of the type U(g) or u(g) (according to the characteristic of
the ground field) — hence H is a quantized (restricted) universal enveloping algebra, in
short QrUEA. When a QFA exists whose specialization (i.e. its “value” at ~ = 0 ) is F [G],
the group G inherits from this “quantization” a Poisson bracket, which makes it a Poisson
(algebraic) group; similarly, if a QrUEA exists whose specialization is U(g) or u(g), the
(restricted) Lie algebra g inherits a Lie cobracket which makes it a Lie bialgebra. Then by
Poisson group theory one has Poisson groups G∗ dual to G and a Lie bialgebra g∗ dual to
g , so other geometrical symmetries are related to the initial ones.

The dependence of a Hopf algebra on ~ can be described as saying that it is defined over
a ring R and ~ ∈ R : so one is lead to dwell upon the category HA of Hopf R–algebras
(maybe with some further conditions), and then raises three basic questions:

— (1) How can we produce quantum groups?

— (2) How can we characterize quantum groups (of either kind) within HA?

— (3) What kind of relationship, if any, does exist between quantum groups over
mutually dual Poisson groups, or mutually dual Lie bialgebras?

A first answer to question (1) and (3) together is given, in characteristic zero, by the
so-called “quantum duality principle”, known in literature with at least two formulations.
One claims that quantum function algebras associated to dual Poisson groups can be taken
to be dual — in the Hopf sense — to each other; and similarly for quantum enveloping
algebras (cf. [FRT1] and [Se]). The second one, formulated by Drinfeld in local terms
(i.e., using formal groups, rather than algebraic groups, and complete topological Hopf
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algebras; cf. [Dr], §7, and see [Ga4] for a proof), gives a recipe to get, out of a QFA over
G, a QrUEA over g∗, and, conversely, to get a QFA over G∗ out of a QrUEA over g .
More precisely, Drinfeld defines two functors, inverse to each other, from the category of
quantized universal enveloping algebras (in his sense) to the category of quantum formal
series Hopf algebras (his analogue of QFAs) and viceversa, such that U~(g) 7→ F~[[G∗]]
and F~[[G]] 7→ U~(g∗) (in his notation, where the subscript ~ stands as a reminder for
“quantized” and the double square brackets stand for “formal series Hopf algebra”).

In this paper we establish a global version of the quantum duality principle which gives
a complete answer to questions (1) through (3). The idea is to push as far as possible
Drinfeld’s original method so to apply it to the category HA of all Hopf algebras which are
torsion-free — or flat, if one prefers this narrower setup — modules over some (integral)
domain, say R, and to do it for each non-zero element ~ in R such that R

/
~R be a field.

To be precise, we extend Drinfeld’s recipe so to define functors from HA to itself. We
show that the image of these “generalized” Drinfeld’s functors is contained in a category of
quantum groups — one gives QFAs, the other QrUEAs — so we answer question (1). Then,
in the characteristic zero case, we prove that when restricted to quantum groups these func-
tors yield equivalences inverse to each other. Moreover, we show that these equivalences ex-
change the types of quantum group (switching QFA with QrUEA) and the underlying Pois-
son symmetries (interchanging G or g with G∗ or g∗), thus solving (3). Other details enter
the picture to show that these functors endow HA with sort of a (inner) “Galois correspon-
dence”, in which QFAs on one side and QrUEAs on the other side are the subcategories (in
HA) of “fixed points” for the composition of both Drinfeld’s functors (in the suitable order):
in particular, this answers question (2). It is worth stressing that, since our “Drinfeld’s
functors” are defined for each non-trivial point (~) of Specmax (R), for any such (~) and for
any H in HA they yield two quantum groups, namely a QFA and a QrUEA, w.r.t. ~ itself.
Thus we have a method to get, out of any single H ∈ HA , several quantum groups.

Therefore the “global” in the title is meant in several respects: geometrically, we con-
sider global objects (Poisson groups rather than Poisson formal groups, as in Drinfeld’s
approach); algebraically we consider quantum groups over any domain R, so there may
be several different “semiclassical limits” (=specializations) to consider, one for each non-
trivial point of type (~) in the maximal spectrum of R (while Drinfeld has R = k[[~]] so
one can specialise only at ~ = 0 ). More generally, our recipe applies to any Hopf alge-
bra, i.e. not only to quantum groups. Finally, most of our results are characteristic-free,
i.e. they hold not only in characteristic zero (as in Drinfeld’s case) but also in positive char-
acteristic. Furthermore, this “global version” of the quantum duality principle opens the
way to formulate a “quantum duality principle for subgroups and homogeneous spaces”,
see [CG].

A key, long-ranging application of our global quantum duality principle (GQDP) is the
following. Take as R the polynomial ring R = k[~ ] , where k is a field: then for any
Hopf algebra over k we have that H[~ ] := R ⊗k H is a torsion-free Hopf R–algebra,
hence we can apply Drinfeld’s functors to it. The outcome of this procedure is the crystal
duality principle (CDP), whose statement strictly resembles that of the GQDP: now Hopf
k–algebras are looked at instead of torsionless Hopf R–algebras, and quantum groups are
replaced by Hopf algebras with canonical filtrations such that the associated graded Hopf
algebra is either commutative or cocommutative. Correspondingly, we have a method to
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associate to H a Poisson group G and a Lie bialgebra k such that G is an affine space (as
an algebraic variety) and k is graded (as a Lie algebra); in both cases, the “geometrical”
Hopf algebra can be attained — roughly — through a continuous 1-parameter deformation
process. This result can also be formulated in purely classical — i.e. “non-quantum” —
terms and proved by purely classical means. However, the approach via the GQDP also
yields further possibilities to deform H into other Hopf algebras of geometrical type, which
is out of reach of any classical approach.

The paper is organized as follows. In §1 we fix notation and terminology, while §2
is devoted to define Drinfeld’s functors and state our main result, the GQDP (Theorem
2.2). In §3 we extend Drinfeld’s functors to a broader framework, that of (co)augmented
(co)algebras, and study their properties in general. §4 instead is devoted to the analysis of
the effect of such functors on quantum groups, and prove Theorem 2.2, i.e. the GQDP. In
§5 we explain the CDP, which is deduced as an application of the CDP to trivial deforma-
tions of Hopf k–algebras: in particular, we study in detail the case of group algebras. In
the last part of the paper we illustrate our results by studying in full detail several relevant
examples. First we dwell upon some well-known quantum groups: the standard quantiza-
tion of the Kostant-Kirillov structure on a Lie algebra (§6), the standard Drinfeld-Jimbo
quantization of semisimple groups (§7), the quantization of the Euclidean group (§8) and
the quantization of the Heisenberg group (§9). Then we study a key example of non-
commutative, non-cocommutative Hopf algebra — a non-commutative version of the Hopf
algebra of formal diffeomorphisms — as a nice application of the CDP (§10).

Warning : this paper is not meant for publication! The results presented here will be
published in separate articles; therefore, any reader willing to quote anything from the
present preprint is kindly invited to ask the author for the precise reference(s).
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