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ABSTRACT

We investigate the notion of real form of complex Lie superalgebras and supergroups,
both in the standard and graded version. Our functorial approach allows most naturally
to go from the superalgebra to the supergroup and retrieve the real forms as fixed points,
as in the ordinary setting. We also introduce a more general notion of compact real form
for Lie superalgebras and supergroups, and we prove some existence results for Lie super-
algebras that are simple contragredient and their associated connected simply connected
supergroups.
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