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QUANTUM DUALITY PRINCIPLE FOR
QUANTUM CONTINUOUS KAC–MOODY ALGEBRAS

FABIO GAVARINI

1. Introduction

Quantum groups, in their standard formulation as suitable topological Hopf al-
gebras on a ring of formal power series k[[ℏ]] , exist in two versions. Namely, our
quantum group is called a quantized universal enveloping algebra (or QUEA, in
short), when its specialization at ℏ = 0 is the universal enveloping algebra of some
Lie algebra (actually a Lie bialgebra), or a quantum formal series Hopf algebra (in
short, a QFSHA) when its specialization is (the algebra of functions on) a formal
algebraic/Lie group — actually, a Poisson group. The categories of QUEA’s and
of QFSHA’s are antiequivalent to each other via linear duality, just like it happens
for their semiclassical counterparts. Surprisingly enough, they are also equivalent,
through explicit equivalence functors, originally sketched in [Dri87, §7], and later
detailed in [Gav02]: in a sloppy formulation, this phenomenon is known as Quantum
Duality Principle — hereafter shortened as QDP.

Roughly speaking, the QDP claims that every QUEA, resp. every QFSHA, can
be “renormalized” as to give rise to a QFSHA, resp. to a QUEA: in either case,
the new quantum algebra — sometimes called “the Drinfeld-Gavarini dual” of the
original one — is a quantization of the object (Poisson group or Lie bialgebra,
respectively) which is Poisson dual to the object that the original quantum algebra
is a quantization of. In particular, if Uℏ(g) is a QUEA quantizing U(g) then the QDP
provides an explicit, functorial construction of a suitable Hopf subalgebra Uℏ(g)

′ of
Uℏ(g) which is a quantization of F [[G∗]] , where G∗ is the formal Poisson group dual
to the Lie bialgebra g . In fact, by construction Uℏ(g)

′ is in fact a k[[ℏ]]–integral
form of k((ℏ))⊗k[[ℏ]] Uℏ(g) , just like Uℏ(g) itself is. In the other direction, if Fℏ[[G]]
is any QFSHA for the formal Poisson group G then the QDP provides a different
k[[ℏ]]–integral form Fℏ[[G]]∨ of k((ℏ))⊗k[[ℏ]] Fℏ[[G]] that is indeed a QUEA for g∗ .
Note that the geometrical objects g and G (and their Poisson dual) considered by

the QDP in its original formulation are finite dimensional, though some aspects of
its functorial construction do apply to the infinite setup as well.

In a different approach, where quantum groups are defined as standard (i.e., non-
topological) Hopf algebras over the field k(q) — that is, à la Jimbo-Lusztig, say
— so that one deals with “polynomial QUEA” and “polynomial QFA (=Quantum
Function Algebras)”, a suitable polynomial version of the QDP has been developed
(cf. [Gav02]). In short, in this context one considers a Hopf algebra H over k(q)
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and an k
[
q , q−1

]
–integral form H of it: the latter then are called QUEA or QFA

depending on whether H
/
( q−1)H has the form U(g) or F [G] , whence one writes

H = Uq(g) or H = Fq[G] , respectively. Then the “polynomial” QDP provides
functorial recipes (direct adaptation of Drinfeld’s original ones) Uq(g) 7→ Uq(g)

′

and Fq[G] 7→ Fq[G]∨ such that Uq(g)
′ is a QFA for G∗ and Fq[G]∨ is a QUEA for

g∗ (actually, the complete result is much stronger, see [Gav02, Theorem 2.2]). In
particular, Uq(g) and Uq(g)

′ are two k
[
q , q−1

]
–integral forms of the same H, and

similarly for Fq[G] and Fq[G]∨ . Indeed, in concrete examples, when the k(q)–algebra
H is given by a presentation by generators and relations, the difference between the
two integral forms Uq(g) and Uq(g)

′ amounts to a different choice of generators
(roughly, a different “normalization” of them), and similarly for Fq[G] and Fq[G]∨

again. For instance, for the usual Jimbo-Lusztig quantum group Uq(g) over a finite-
dimensional semisimple g one can realize that (up to details) Uq(g) is nothing but
Lusztig’s restricted form, while Uq(g)

′ is De Concini-Procesi‘s unrestricted one. As
both can be defined even over Z

[
q , q−1

]
, thus leading to (different) theories of

quantum groups at roots of 1 , we also see how the polynomial QDP is somehow
deeply intertwined with the theory of quantum groups at roots of 1 — although a
formal, sound theory about that correlation has still to be unveiled.

To date, the impact of the QDP — either in formal or in polynomial version —
on the development of quantum group theory has been paramount, in a pervasive
manner (although not always explicitly recognized). Nevertheless, as in real life
examples and constructions of QUEA’s are available way more than of QFSHA’s
(or QFA’s), people mostly applied the QDP in the direction QUEA 7→ QFSHA (or
QUEA 7→ QFA , in the polynomial case).

For instance, the formal QDP was used in the very construction of (formal)
QUEA’s of Lie bialgebras - possibly extending its range to infinite-dimensional ones
— cf. [EtK96, Enr01, Enr05, Hal06, EnH07] — even extending it to the infinite-
dimensional framework — as in [ATL18, ATL19]. These results were also extended
to broader contexts, such as that of quasi-Hopf QUEA (over quasi-Lie bialgebras)
— cf. [EnH04] — that of super Lie bialgebras — cf. [Gee06] — that of (quan-
tum) groupoids — cf. [ChG15] — that of (quantization of) Γ–Lie bialgebras and
Poisson-Hopf stacks over groupoids — cf. [EnH08, HXT06] — and that of Yangians
— cf. [KaWWY, FiT19]. In another direction, the formal QDP was also applied
to study quantum R–matrices and associated structures (and variations on this
theme), both from a geometrical point of view or a representation-theoretic one, as
in [GaH01, GaH03, EGH03, EEM05]. Another geometrical application was to quan-
tum homogeneous spaces, as in [CiG06], where the QDP was suitably extended to
formal quantizations (both infinitesimal and global) of Poisson homogeneous spaces.
On the other hand, the polynomial version of the QDP is applied to (or is definitely

underlying) the construction and study of new QFA’s — in a finite dimensional setup
(cf. [DPr95] for the uniparameter case, and [Gav98-2, GaGa] for the multiparameter
case) or an infinite one (cf. [Bec94, Bec96, BeK96, Gav00]) — or new QUEA’s —
in a finite (cf. [Gav98-1, GaR07]) or infinite (cf. [Gav00]) dimensional setup. In a
more geometrical perspective, it was applied — again in the “direction” QUEA 7→
QFA to the study of quantum R–matrices (and related subjects) in [Gav97, Gav01]
— respectively for finite and affine type Kac–Moody Lie bialgebras, and in the
study of Poisson homogeneous spaces in [CFG08] — where a suitable version of
polynomial QDP is tailored ad hoc for the projective case — in [FiG11] — where
quantum Grassmannians are treated — and in [CiG14] — where a general result is
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provided. Still on a geometrical side, in the wake of a very fruitful research line, the
polynomial QDP was applied in [HaL16] to provide a new topological invariant of
integral homology spheres.

Finally, despite being a phenomenon that is intrinsically “quantum” in nature,
the QDP (in polynomial version) had also found a remarkable application back in
“classical” Hopf algebra theory — cf. [Gav05-2] — with lot of immediate applications
at hand (see [Gav05-1] for an example).

The purpose of the present work is to prove yet another instance of the QDP,
both formal and polynomial, namely in the direction QUEA 7→ QF(SH)A for the
quantization of the continuous Kac–Moody algebras by Appel, Sala and Schiffmann
(see [ASS18, ApS20]. Indeed, these (topological) Lie bialgebras, hereafter denoted
by gX , are uncountably infinite-dimensional, hence one cannot directly apply the
QDP as stated and proved in [Gav02]. Instead, starting from the formal QUEA

Uℏ( gX) we provide a direct definition of a suitable subalgebra Ũℏ( gX) of Uℏ( gX)
and then we prove that it has exactly the properties predicted by the QDP, in

particular Ũℏ( gX) is a QFSHA whose semiclassical limit is F
[[
G∗]] . Finally, we

also prove that this Ũℏ( gX) actually admits also a description that coincides with
the one prescribed by the usual Drinfeld’s functor Uℏ(g) 7→ Uℏ(g)

′ .
As a second step, we introduce a suitable polynomial QUEA Uq( gX) — easy to

guess as a subalgebra of Uℏ( gX) — and we realize for it the (polynomial) QDP by
introducing by hands its appropriate Drinfeld-Gavarini dual Uq( gX)

′ . Here again,
we cannot apply the general recipe given in [Gav07] (as the latter applies to the
finite dimensional case only), but we give instead a direct definition of a suitable

integral form Ũq( gX) , inspired by what is done for Uq(g) when g finite Kac–Moody
(cf. [DPr95] and [Gav98-2]) or affine Kac–Moody (see [Bec96, BeK96] and [Gav00]).

Later on, we also prove that this Ũq( gX) does coincide with what comes out if one
literally applies the recipe for Drinfeld’s functor Uq(g) 7→ Uq(g)

′ as given in [Gav07].
An important feature of the construction sketched above is the following. In the

“indirect” construction, mentioned above, of the Drinfeld-Gavarini dual Uq(g)
′ as

a suitable k
[
q , q−1

]
–integral form of k(q) ⊗ Uq(g) when g is Kac–Moody finite or

affine (as in the works of De Concini-Procesi, Beck and the author), a critical step
is the construction of suitable “quantum root vectors” for any root, that are not
available from scratch. However, the Lie bialgebras gX have a Kac–Moody like
presentation which includes, as generators, the (analogue of) “root vectors” for any
possible roots; even more, the same is true for the QUEA’s Uℏ( gX) and Uq( gX) alike.
Therefore, the “critical step” mentioned before is already fixed from scratch, so that

performing the same construction of the k
[
q , q−1

]
–integral form Ũq( gX) = Uq( gX)

′

of k(q) ⊗ Uq( gX) as mentioned above becomes an easy task. Up to technicalities,

the very same strategy can be followed in order to define Uℏ( gX)
′ = Ũℏ( gX) , again

because all needed quantum root vectors are already given by definition.
As a last remark, we point out that both the QUEA Uq( gX) — for the (topo-

logical) Lie bialgebra gX — and the QFA Ũq( gX) = Uq( gX)
′ — for the Poisson

group G∗
X — are actually defined over Z

[
q , q−1

]
: hence, an “arithmetic theory”

for specializations at roots of 1, much like Lusztig (for the QUEA side) and De
Concini-Procesi and Beck (for the QFA side) did, in principle is at hand.
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