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INTRODUCTION

In literature, by “quantum group” one usually means some deformation of an algebraic
object that in turn encodes a geometrical object describing symmetries (such as a Lie or
algebraic group or a Lie algebra): we are interested now in the case when the geometrical
object is a Lie bialgebra g , and the algebraic one its universal enveloping algebra U(g) ,
with its full structure of co-Poisson Hopf algebra.

In the most studied case, such a deformation explicitly depends on one single parameter,
in a “formal” version — like with Drinfeld’s Uℏ(g) — or in a “polynomial” one — such
as with Jimbo-Lusztig’s Uq(g) . However, since the beginning of the theory, more gen-
eral deformations depending on many parameters have been considered too: taking this
many parameters as a single “multiparameter” one then talks of “multiparameter quan-
tum groups” — or MpQG’s in short — that again exist both in formal and in polynomial
version; see for instance [BGH], [BW1, BW2], [CM2], [CV1], [Hay], [HLT], [HP1], [HPR],
[Ko], [KT], [Man], [OY], [Re], [Su], [Ta] — and the list might be longer.

In the previously mentioned papers, multiparameter quantum enveloping algebras where
often introduced via ad hoc constructions. A very general recipe, instead, was that devised
by Reshetikhin (cf. [Re]), that consists in performing a so-called deformation by twist on
a “standard” one-parameter quantum group.

Similarly, a somehow dual method was also developed, that starts again from a usual
one-parameter quantum group and then performs on it a deformation by a 2–cocycle. In
addition, as the usual uniparameter quantum group is a quotient of the Drinfeld’s quantum
double of two Borel quantum (sub)groups, one can start by deforming (e.g., by a 2–cocycle)
the Borel quantum subgroups and then look at their quantum double and its quotient. This
is indeed the point of view adopted, for instance, in [AA2], [AAR1, AAR2], [An1, An2,
An3, An4], [AS1, AS2], [AY], [Gar], [He1, He2], [HK], [HY] and [Mas1], where in addition
the Borel quantum (sub)groups are always thought of as bosonizations of Nichols algebras.

In our forthcoming paper [GaGa] we shall thoroughly compare deformations by twist
or by 2–cocycles on the standard uniparameter quantum group; up to technicalities, it
turns out that the two methods yield the same results. Taking this into account, we
adopt the point of view of deformations by 2–cocycles, implemented on uniparameter



quantum groups, that are realized as (quotients of) quantum doubles of Borel quantum
(sub)groups. With this method, the multiparameter q codifying our MpQG is used from
scratch as the core datum to construct the Borel quantum (sub)groups and eventually
remains in the description of our MpQG by generators and relations. In this approach, a
natural constraint arises for q , namely that it be of Cartan type, to guarantee that the
so-constructed MpQG have finite Gelfand-Kirillov dimension.

In order to have meaningful specializations of a MpQG, one needs to choose a suitable
integral form of that MpQG, and then specialize the latter: indeed, by “specialization of a
MpQG” one means in short the specialization of such an integral form of it. The outcome
of the specialization process then can strongly depend on the choice of the integral form.
For the usual case of uniparameter “canonical” quantum groups, one usually considers
two types of integral forms, namely restricted ones (after Lusztig’s) and unrestricted ones
(after De Concini and Procesi), whose specialization yield entirely different outcomes —
dual to each other, in a sense. There also exist mixed integral forms (due to Habiro and
Thang Le) that are very interesting for applications in algebraic topology.

For general MpQG’s, we introduce integral forms of restricted, unrestricted and mixed
type, by directly extending the construction of the canonical setup: although this is quite
a natural step, it seems (to the best of the authors’ knowledge) that it had not yet been
considered so far. Moreover, for restricted forms — for which the multiparameter has to
be “integral”, i.e. made of powers (with integral exponents) of just one single, “basic”
parameter q — we consider two possible variants, which gives something new even in the
canonical case. For these integral forms (of either type) we state and prove all those
fundamental structure results (triangular decompositions, PBW Theorems, duality, etc.)
that one needs to work with them.

When taking specialization at q = 1 (where “ q ” is again sort of a “basic parameter”
underlying the multiparameter q ), co-Poisson and Poisson Hopf structures pop up, yielding
classical objects that bear some Poisson geometrical structure. In detail, when specializing
the restricted form one gets the enveloping algebra of a Lie bialgebra, and when specializing
the unrestricted one the function algebra of a Poisson group is found: this shows some
duality phenomenon, which is not surprising because the two integral forms are in a sense
related by Hopf duality. This feature already occurs in the uniparameter, canonical case:
but in the present, multiparameter setup, the additional relevant fact is that the involved
(co)Poisson structures directly depend on the multiparameter q .

Now consider instead a non-trivial root of 1, say ε . Then the specialization of a MpQG
at q = ε is tightly related with its specialization at q = 1 : this link is formalized in a so-
called quantum Frobenius morphism — a Hopf algebra morphism with several remarkable
properties between these two specialized MpQG’s — moving to opposite directions in
the restricted and the unrestricted case. We complete these morphisms to short exact
sequences, whose middle objects are our MpQG’s at q = ε ; the new Hopf algebras we add
to complete the sequences are named small MpQG’s.

Remarkably enough, we prove that the above mentioned short exact sequences have the
additional property of being cleft ; as a consequence, our specialized MpQG’s at q = ε are in
fact cleft extensions of the corresponding small MpQG’s and the corresponding specialized
MpQG’s at q = 1 — which are classical geometrical objects, see above. Furthermore,



implementing this construction in both cases — with restricted and with unrestricted
forms — literally yields two small MpQG’s: nevertheless, we eventually prove that they
do coincide indeed.

To some extent, these results (at roots of 1) are a direct generalisation of what happens
in the uniparameter case (i.e., for the canonical multiparameter). However, some of our
results seem to be entirely new even for the uniparameter context.

Finally, here is the plan of the paper.

In section 2 we set some basic facts about Hopf algebras, the bosonization process,
cocycle deformations, braided spaces, etc. — along with all the related notation.

Section 3 introduces our MpQG’s: we define them by generators and relations, and we
recall that we can get them as 2–cocycle deformations of the canonical one.

We collect in section 4 some fundamental results on MpQG’s, such as the construction of
quantum root vectors and PBW-like theorems (and related facts). In addition, we compare
the multiplicative structure in the canonical MpQG with that in a general MpQG, the latter
being thought of as cocycle deformation of the former.

In section 5 we introduce integral forms of our MpQG’s — of restricted type and of
unrestricted type — providing all the basic results one needs when working with them.
We also shortly discuss mixed integral forms.

Section 6 focuses on specializations at 1, and the semiclassical structures arising from
MpQG’s by means of this process.

At last, in section 7 we finally harvest our main results. Namely, we deal with spe-
cializations at non-trivial roots of 1, with quantum Frobenius morphisms and with small
MpQG’s, for both the restricted version and the unrestricted one.
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[GaGa] G. A. Garćıa, F. Gavarini, Twist deformations vs. cocycle deformations of quantum groups, work
in progress.
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