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INTRODUCTION

Roughly speaking, quantum groups — in the form of quantized universal enveloping
algebras — are Hopf algebra deformations of the universal enveloping algebra U(g) of
some Lie algebra g. From this deformation, g itself inherits (as “semiclassical limit” of the
deformed coproduct) a Lie cobracket that makes it into a Lie bialgebra — the infinitesimal
counterpart of a Poisson group whose tangent Lie algebra is g.

When g is a complex simple Lie algebra, a quantum group in this sense, depending on
a single parameter, was introduced by Drinfeld [Dr] as a formal series deformation Uj(g)
defined over a ring of formal power series (in the formal parameter i) and by Jimbo and
Lusztig (see [Ji], [Lu]) as a deformation U,(g) defined over a ring of rational series (in
the formal parameter ¢). Indeed, Jimbo’s U,(g) is actually a “polynomial version” of
Drinfeld’s Ux(g) .

Later on, several authors (cf. [BGH], [BW1,BW2], [CM], [CV1], [Hay], [HLT], [HPR],
[Ko], [KT], [Ma], [OY], [Re], [Su], [Ta], to name a few) introduced many types of defor-
mations of U(g) depending on several parameters, usually referred to as “multiparameter
quantum groups”. In turn, these richer deformations induce as semiclassical limits corre-
sponding “multiparameter” bialgebra structures on g. The construction of these multi-
parameter deformations applies a general procedure, always available for Hopf algebras,
following two patterns that we recall hereafter.

Let H be any Hopf algebra (in some braided tensor category). Among all possible
deformations of the Hopf structure of H, we look at those in which only one of either the
product or the coproduct is actually modified, while the other one is kept fixed. The general
deformation will then be, somehow, an intermediate case between two such extremes.
On the one hand, a twist deformation of H is a (new) Hopf algebra structure on H
where the multiplicative structure is unchanged, whereas a new coproduct is defined by
A7 (z) == FA(x)F~! for x € H: here F is an invertible element in H®? satisfying
suitable axioms, called a “twist” for H. On the other hand, a 2—cocycle deformation of

1



H is one where the coproduct is unchanged, while a new product is defined via a formula
which only depends on the old product and on a 2—cocycle o of H (as an algebra): again,
this procedure can be read as a suitable “conjugation” of the old product map by the
2—cocycle.

Inasmuch as a meaningful notion of “duality” applies to the Hopf algebras one is dealing
with, these two constructions of deformations are dual to each other, directly by definition.
In detail, if H* is a Hopf algebra dual to H with respect to a non-degenerate (skew) Hopf
pairing, e.g. H and H* := H° (i.e., Sweedler’s restricted dual), then the dual of the
deformation by twist, resp. by 2—cocycle, of H is a deformation by 2—cocycle, resp. by
twist, of H*; moreover, the 2—cocycle, resp. the twist, on H* is uniquely determined by
the twist, resp. the 2—cocycle, on H. In order to stress this duality between the two types
of deformation procedures that we are dealing with, as well as the fact that both are in
fact “conjugations” of some sort, we adopt the terminology “comultiplication twisting”
and “multiplication twisting”, instead of “deformation by twist” and of “deformation by
2—cocycle”, respectively.

It so happens that the large majority of multiparameter quantizations of U(g) considered
in literature actually occur as either comultiplication twistings or multiplication twistings
of a one-parameter quantization of Drinfeld’s type or Jimbo-Lusztig’s type. Indeed, in
both cases the twists and the 2—cocycles taken into account are of special type, namely
“toral” ones, in that (roughly speaking) they are defined only in terms of the (quantum)
toral part of the one-parameter deformation of U(g) .

Technically speaking, Drinfeld’s Uy(g) is better suited for comultiplication twistings,
while Jimbo-Lusztig’s U,(g) is typically used for multiplication twistings (see [Re], [Mal,
[Su|, [HPR], [HLT], [CV1], [Ta]). As we aim to compare both kinds of twistings, we focus on
polynomial one-parameter quantum groups U, (g) , and we adapt the very notion of “twist
deformation”, or “comultiplication twisting”, to them. Then we consider both comultipli-
cation twistings and multiplication twistings (of “toral type”, in both cases) of U,(g) —
thus getting “twisted quantized universal enveloping algebras (=TwQUEA’s)” and “mul-
tiparameter quantized universal enveloping algebras (=MpQUEA’s)”, respectively — and
compare them. Moreover, by natural reasons we restrict ourselves to twists and cocycles
that are defined by a rational datum, i.e., a matrix with rational entries.

As a first result, we describe the link twist <— 2-cocycle under duality. Namely,
quantum Borel (sub)groups U, (b4 ) of opposite signs are in Hopf duality (in a proper sense):
then we prove that any twisting on one side — of either comultiplication or multiplication
— and the dual one on the other side — of either multiplication or comultiplication,
respectively — are described by the same rational datum. Indeed, we provide an explicit
bijection between the sets of toral twists and toral 2—cocycles.

As a second, more striking result (the core of our paper, indeed), we find that, in
short, twisted quantum groups and multiparameter quantum groups coincide: namely,
any TwQUEA can be realized as a MpQUEA, and viceversa. Even more precisely, the
twist and the 2—cocycle involved in either realization are described by the same (rational)
datum. This result is, in a sense, a side effect of the “autoduality” of quantum groups
(in particular Borel ones). The proof is constructive, and quite explicit: indeed, switching
from the realization as TwQUEA to that as MpQUEA and viceversa is a sheer change of



presentation. We can shortly sketch the underlying motivation: any “standard” (=unde-
formed) quantum group is pointed (as a Hopf algebra); then any TwQUEA of “toral type”
is pointed as well, and it is generated by the quantum torus and (1,g)-skew primitive
elements: these new “homogeneous” generators yield a new presentation, which realizes
the TwQUEA as a MpQUEA.

The direct consequence of this result is that (roughly speaking, and within the borders
of our restrictions) there exists only one type of multiparameter quantization of U(g), and
consequently only one type of corresponding multiparameter Lie bialgebra structure on g
arising as semiclassical limits, as in [GG1].

All the elements that lead us to the above mentioned results for TwQUEA’s and
MpQUEA’s are also available for Hopf algebras that (like Borel quantum subgroups) are
bosonizations of Nichols algebras of diagonal type; thus, we can replicate our work in that

context too. In another direction, we extend further on this analysis in the framework of
multiparametric formal QUEA’s, a la Drinfeld — cf. [GG2].

We finish with a few words on the structure of the paper.

In Section 2 we collect the material on Hopf algebras and their deformations that will
be later applied to quantum groups. Section 3 is devoted to introduce quantum groups
(both in Drinfeld’s version and in Jimbo-Lusztig’s one) and their comultiplication twistings
(of rational, toral type), i.e., the TwQUEA’s: the part on Drinfeld’s quantum groups
could be dropped, yet we present it to explain the deep-rooting motivations of our work.
In Section 4, instead, we present the multiplication twistings (of rational, toral type) of
Jimbo-Lusztig’s quantum groups, hence the MpQUEA’s. Finally, in Section 5 we compare
TwQUEA’s and MpQUEA'’s, proving that — in a proper sense, under some finiteness
assumption — they actually coincide.
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