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ABSTRACT

In this paper we study two deformation procedures for quantum groups: deformations
by twists, that we call “comultiplication twisting”, as they modify the coalgebra structure,
while keeping the algebra one — and deformations by 2–cocycle, that we call “multiplica-
tion twisting”, as they deform the algebra structure, but save the coalgebra one.

We deal with quantum universal enveloping algebras, in short QUEA’s, for which we
accordingly consider those arising from twisted deformations (in short TwQUEA’s) and
those arising from 2–cocycle deformations, usually called multiparameter QUEA’s (in short
MpQUEA’s). Up to technicalities, we show that the two deformation methods are equiva-
lent, in that they eventually provide isomorphic outputs, which are deformations (of either
kinds) of the “canonical”, well-known one-parameter QUEA by Jimbo and Lusztig. It
follows that the two notions of TwQUEA’s and of MpQUEA’s — which, in Hopf algebra
theoretical terms are naturally dual to each other — actually coincide; thus, that there
exists in fact only one type of “pluriparametric deformation” for QUEA’s. In particular,
the link between the realization of any such QUEA as a MpQUEA and that as a TwQUEA
is just a (very simple, and rather explicit) change of presentation.
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[Gar] G. A. Garćıa, Multiparameter quantum groups, bosonizations and cocycle deformations, Rev. Un.
Mat. Argentina 57 (2016), no. 2, 1–23.
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