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INTRODUCTION

To every Lie supergroup G one can associate the
(
G0, g

)
formed by the classical Lie

group G0 underlying G and the tangent Lie superalgebra g = Lie(G) of G ; these two
objects are “compatible” in a natural sense, so that their pair is what is called a “super
Harish-Chandra pair”, or just “sHCp” for short. Overall, mapping G 7→

(
G0, g

)
yields

a functor, call it Φ , from the category of Lie supergroups — either smooth, analytic or
holomorphic — to the category of super Harish-Chandra pairs — of smooth, analytic or
holomorphic type respectively. Is there any functor Ψ from sHCp’s to Lie supergroups
which be a quasi-inverse for Φ , so that the two categories be equivalent? And how much
explicit such a functor (if any) is ?

A first answer to this question was given by Kostant and by Koszul in the real smooth
case (see [18] and [19]), providing an explicit quasi-inverse for Φ . Later on, Vishnyakova
(see [24]) fixed the complex holomorphic case, and her proof works for the real analytic
case as well. More recently, this result was increasingly extended to the setup of algebraic
supergeometry (see [8], [21], [22]). It is worth remarking, though, that all these subse-
quent results were, in the end, further improvements of the original idea by Koszul (while
Kostant’s method was a slight variation of that), who defined a Lie supergroup out of a
sHCp

(
K+ , k

)
as a super-ringed space, defining the “proper” sheaf of superalgebras onto

K+ by means of k .

In this paper we present a new solution, namely we provide a new functor Ψ — in
two different versions — from sHCp’s to Lie supergroups that is quasi-inverse to Φ . For
this we follow the approach where, instead of thinking of supermanifolds as being super-
ringed manifolds, one treats them as suitable functors, defined on the category of “Weil
superalgebras”. This point of view allows to unify several different approaches to super-
geometry (see [3]) and also to treat the infinite-dimensional setup (see [2]); for a broader
discussion about this, we refer to classical sources as [4], [10], [20], [25] or more recent ones
like [3], [5], [7], [23].

Now, if we want a functor Ψ from sHCp’s to Lie supergroups, we need a Lie supergroup
GP for each sHCp P ; to have such a GP (as a functor) we need a Lie group GP(A) for



each Weil superalgebra A , whose definition must be natural in A : moreover, one still has
to show that the resulting functor have those additional properties that make it into a Lie
supergroup. Finally, all this should aim to find a Ψ that is quasi-inverse to Φ — and this
fixes ultimate bounds to the construction we aim to.

Bearing all this in mind, the construction that we present goes as follows. Given a super
Harish-Chandra pair P = (G+, g) , for each Weil superalgebra A , we define a group GP(A)
abstractly, by generators and relations: this definition is natural in A , hence it yields a
functor from Weil algebras to (abstract) groups, call it GP — cf. §3.1 and §3.3. As a key
step in the work, we prove that GP admits a “global splitting”, i.e. it is the direct product
of G+ times a totally odd affine superspace (isomorphic to g1 , the odd part of g ): as both
these are supermanifolds, it turns out that GP itself is a supermanifold as well, hence it is
a Lie supergroup because (as a functor) it is group-valued too — cf. §3.2 and §3.4. One
more step proves that the construction of GP is natural in P , so it yields a functor Ψ from
sHCp’s to Lie supergroups: this is our candidate to be a quasi-inverse to Φ — cf. Theorem
3.2.6 and Theorem 3.4.6.

It is immediate to check that Φ ◦Ψ is isomorphic to the identity functor onto sHCp’s,
while proving that Ψ ◦ Φ is isomorphic to the identity on Lie supergroups is much more
demanding. For this we need to know that every Lie supergroup G has a “global splitting”
on its own: this fact is more or less known among specialists, but we need it stated in a
genuine geometrical form, while it is usually given in sheaf-theoretic terms — so we work
it out explicitly (cf. §2.4). In fact, we find two different formulations of such a result: this
is why, building upon them, we can provide two versions, Ψ◦ and Ψe , of a functor Ψ as
required.

Finally, the reader can find a more detailed treatment in the expanded version [17] of
this paper. Moreover, specific examples of application can be realized by suitably adapting
the constructions of algebraic supergroups presented in [11], [12], [13], [14] and [15].
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