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ABSTRACT

This paper dwells upon two aspects of affine supergroup theory, investigating the links
among them.

First, I discuss the “splitting” properties of affine supergroups, i.e. special kinds of
factorizations they may admit — either globally, or point-wise. Almost everything should
be more or less known, but seems to be not as clear in literature (to the author’s knowledge)
as it ought to.

Second, I present a new contribution to the study of affine supergroups by means of
super Harish-Chandra pairs (a method already introduced by Koszul, and later extended
by other authors). Namely, I provide a new functorial construction Ψ which, with each
super Harish-Chandra pair, associates an affine supergroup that is always globally strongly

split (in short, gs-split) — thus setting a link with the first part of the paper. One knows
that there exists a natural functor Φ from affine supergroups to super Harish-Chandra
pairs: then I show that the new functor Ψ — which goes the other way round — is
indeed a quasi-inverse to Φ , provided we restrict our attention to the subcategory of affine
supergroups that are gs-split. Therefore, (the restrictions of) Φ and Ψ are equivalences
between the categories of gs-split affine supergroups and of super Harish-Chandra pairs.
Such a result was known in other contexts, such as the smooth differential or the complex
analytic one, via different approaches (see [16], [19], [7]): nevertheless, the novelty in the
present paper lies in that I construct a different functor Ψ and thus extend the result to a
much larger setup, with a totally different, more geometrical method. In fact, this method
(very concrete, indeed) is universal and characteristic-free: I present it here for the algebro-
geometric setting, but actually it can be easily adapted to the frameworks of differential
or complex-analytic supergeometry.

The case of linear supergroups is treated also as an intermediate, inspiring step.

Some examples, applications and further generalizations are presented at the end of the
paper.
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ing Company, The Netherlands, 1970.

[9] P. Deligne, J. Morgan, Notes on supersymmetry (following J. Bernstein), in: “Quantum fields and
strings: a course for mathematicians”, vol. 1, 2 (Princeton, NJ, 1996/1997), American Mathematical
Society, Providence, RI, 1999, pp. 41–97.

[10] R. Fioresi, F. Gavarini, Chevalley Supergroups, Memoirs AMS 215 (2012), no. 1014.

[11] R. Fioresi, F. Gavarini, On the construction of Chevalley supergroups, in: S. Ferrara, R. Fio-
resi, V. S. Varadarajan (eds.), “Supersymmetry in Mathematics & Physics”, UCLA Los Angeles,

U.S.A. 2010; Lecture Notes in Math. 2027, Springer-Verlag, Berlin-Heidelberg, 2011, pp. 101–123.

[12] F. Gavarini, Chevalley Supergroups of type D(2, 1; a), Proc. Edinburgh Math. Soc. (2) 57 (2014),
no. 2, 465-491.

[13] F. Gavarini, Algebraic supergroups of Cartan type, Forum Mathematicum 26 (2014), no. 5, 1473–1564.

[14] V. G. Kac, Lie superalgebras, Advances in Mathematics 26 (1977), 8–96.

[15] B. Kostant, Graded manifolds, graded Lie theory, and prequantization, in: Differential geometrical

methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975); Lecture Notes in Math.
570, Springer, Berlin, 1977, pp. 177–306.

[16] J.-L. Koszul, Graded manifolds and graded Lie algebras, Proceedings of the international meeting on

geometry and physics (Florence, 1982), Pitagora, Bologna, 1982, pp. 71–84.

[17] Y. Manin, Gauge field theory and complex geometry, Springer-Verlag, Berlin, 1988.

[18] A. Masuoka, The fundamental correspondences in super affine groups and super formal groups, J. Pure

Appl. Algebra 202 (2005), 284–312.

[19] A. Masuoka, Harish-Chandra pairs for algebraic affine supergroup schemes over an arbitrary field,
Transform. Groups 17 (2012), no. 4, 1085–1121.

[20] A. Masuoka, T. Shibata, Algebraic supergroups and Harish-Chandra pairs over a commutative ring,
preprint arXiv:1304.0531 [math.RT] (2013).

[21] E. G. Vishnyakova, On complex Lie supergroups and homogeneous split supermanifolds, Transform.

Groups 16 (2011), no. 1, 265–285.

[22] V. S. Varadarajan, Supersymmetry for mathematicians: an introduction, Courant Lecture Notes 1,
American Mathematical Society, Providence (RI), 2004.


