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INTRODUCTION

In this paper we work with quantizations of (algebraic) complex and real groups, their
subgroups and homogeneous spaces, and a special symmetry among such quantum objects
which we refer to as the “Global Quantum Duality Principle”. This is just a last step in
a process, which is worth recalling in short.

In any possible sense, quantum groups are suitable deformations of some algebraic
objects attached with algebraic groups, or Lie groups. Once and for all, we adopt the
point of view of algebraic groups: nevertheless, all our analysis and results can be easily
converted in the language of Lie groups.

The first step to deal with is describing an algebraic group G via suitable algebraic
object(s). This can be done following two main approaches, a global one or a local one.

In the global geometry approach, one considers U(g) — the universal enveloping algebra
of the tangent Lie algebra g := Lie(G) — and F [G] — the algebra of regular functions
on G . Both these are Hopf algebras, and there exists a non-degenerate pairing among
them so that they are dual to each other. Clearly, U(g) only accounts for the local data
of G encoded in g , whereas F [G] instead totally describes G : thus F [G] yields a global
description of G , which is why we speak of “global geometry” approach.

In this context, one describes (globally) a subgroup K of G — always assumed to
be Zariski closed — via the ideal in F [G] of functions vanishing on it; alternatively, an
infinitesimal description is given taking in U(g) the subalgebra U(k) , where g := Lie(K) .

For a homogeneous G–space, say M , one describes it in the form M ∼= G
/
K — which

amounts to fixing some point in M and its stabilizer subgroup K in G . After this, a local
description of M ∼= G

/
K is given by representing its left-invariant differential operators

as U(g)
/
U(g) k : therefore, we can select U(g) k — a left ideal, left coideal in U(g) — as

algebraic object to encode M ∼= G
/
K , at least infinitesimally. For a global description

instead, obstructions might occur. Indeed, we would like to describe M ∼= G
/
K via some

algebra F [M ] ∼= F
[
G
/
K
]

strictly related with F [G] . This varies after the nature of

M ∼= G
/
K — hence of K — and in general might be problematic. Indeed, there exists a

most natural candidate for this job, namely the set F [G]
K

of K–invariants of F [G] , which

is a subalgebra and left coideal. The problem is that F [G]
K

permits to recover exactly
G
/
K if and only if M ∼= G

/
K is a quasi-affine variety (which is not always the case). This

yields a genuine obstruction, in the sense that this way of (globally) encoding the space
M ∼= G

/
K only works with quasi-affine G–spaces; for the other cases, we just drop this

approach — however, for a complete treatment of the case of projective G–spaces see [6].



In contrast, the approach of formal geometry is a looser one: one replaces F [G] with a
topological algebra F [[G]] = F

[[
Gf

]]
— the algebra of “regular functions on the formal

group Gf” associated with G — which can be realized either as the suitable completion of
the local ring of G at its identity or as the (full) linear dual of U(g) . In any case, both
algebraic objects taken into account now only encode the local information of G .

In this formal geometry context, the description of (formal) subgroups and (formal)
homogeneous spaces goes essentially the same. However, in this case no problem occurs
with (formal) homogeneous space, as any one of them can be described via a suitably

defined subalgebra of invariants F
[[
Gf

]]Kf : in a sense, “all formal homogeneous spaces
are quasi-affine”. As a consequence, the overall description one eventually achieves is
entirely symmetric.

When dealing with quantizations, Poisson structures arise (as semiclassical limits) on
groups and Lie algebras, so that we have to do with Poisson groups and Lie bialgebras. In
turn, there exist distinguished subgroups and homogeneous spaces — and their infinitesi-
mal counterparts — which are “well-behaving” with respect to these extra structures: these
are coisotropic subgroups and Poisson quotients. Moreover, the well-known Poisson dual-
ity — among Poisson groups G and G∗ and among Lie bialgebras g and g∗ — extends to
similar dualities among coisotropic subgroups (of G and G∗) and among Poisson quotients
(of G and G∗ again). It is also useful to notice that each subgroup contains a maximal
coisotropic subgroup (its “coisotropic interior”), and accordingly each homogeneous space
has a naturally associated Poisson quotient.

As to the algebraic description, all properties concerning Poisson (or Lie bialgebra)
structures on groups, Lie algebras, subgroups and homogeneous spaces have unique char-
acterizations in terms of the algebraic codification one adopts for these geometrical objects.
Details change a bit according to whether one deals with global or formal geometry, but
everything goes in parallel in either context.

By (complex) “quantum group” of formal type we mean any topological Hopf algebra
H~ over the ring C[[~]] whose semiclassical limit at ~ = 0 — i.e., H~

/
~H~ — is of the

form F
[[
Gf

]]
or U(g) for some formal group Gf or Lie algebra g . Accordingly, one writes

H~ := F~
[[
Gf

]]
or H~ := U~(g) , calling the former a QFSHA and the latter a QUEA. If

such a quantization (of either type) exists, the formal group Gf is Poisson and g is a Lie
bialgebra; accordingly, a dual formal Poisson group G ∗

f and a dual Lie bialgebra g∗ exist
too.

In this context, as formal quantizations of subgroups or homogeneous spaces one typi-
cally considers suitable subobjects of either F~

[[
Gf

]]
or U~(g) such that: (1) with respect

to the containing formal Hopf algebra, they have the same relation as a in the “classical”
setting — such as being a one-sided ideal, a subcoalgebra, etc.; (2) taking their special-
ization at ~ = 0 is the same as restricting to them the specialization of the containing
algebra (this is typically mentioned as a “flatness” property). This second requirement
has a key consequence, i.e. the semiclassical limit object is necessarily “good” w.r. to the
Poisson structure: namely, if we are quantizing a subgroup, then the latter is necessarily
coisotropic, while if we are quantizing a homogeneous space then it is indeed a Poisson
quotient.



In the spirit of global geometry, by (complex) “quantum group” of global type we mean
any Hopf algebra Hq over the ring C

[
q, q−1

]
whose semiclassical limit at q = 1 — i.e.,

Hq

/
( q−1)Hq — is of the form F [G] or U(g) for some algebraic group G or Lie algebra g .

Then one writes Hq := Fq[G] or Hq := U~(g) , calling the former a QFA and the latter a
QUEA. Again, if such a quantization (of either type) exists the group G is Poisson and g
is a Lie bialgebra, so that dual formal Poisson groups G∗ and a dual Lie bialgebra g∗ exist
too.

As to subgroups and homogeneous spaces, global quantizations can be defined via a sheer
reformulation of the same notions in the formal context: we refer to such quantizations as
strict. In this paper, we introduce two more versions of quantizations, namely proper and
weak ones, ordered by increasing generality, namely {strict} ( {proper} ( {weak} . This
is achieved by suitably weakening the condition (2) above which characterizes a quantum
subgroup or quantum homogeneous space. Remarkably enough, one finds that now the
existence of a proper quantization is already enough to force a subgroup to be coisotropic,
or a homogeneous space to be a Poisson quotient.

The Quantum Duality Principle (=QDP) was first developed by Drinfeld (cf. [7], §7)
for formal quantum groups (see [10] for details). It provides two functorial recipes, inverse
to each other, acting as follows: one takes as input a QFSHA for Gf and yields as output
a QUEA for g∗ ; the other one as input a QUEA for g and yields as output a QFSHA for
G ∗
f .

The Global Quantum Duality Principle (=GQDP) is a version of the QDP tailored for
global quantum groups (see [11,12]): now one functorial recipe takes as input a QFA for
G and yields a QUEA for g∗ , while the other takes a QUEA for g and provides a QFA for
G∗ .

An appropriate version of the QDP for formal subgroups and formal homogeneous spaces
was devised in [5]. Quite in short, the outcome there was an explicit recipe which taking as
input a formal quantum subgroup, or a formal quantum homogeneous space, respectively,
of Gf provides as output a quantum formal homogeneous space, or a formal quantum
subgroup, respectively, of G ∗

f . In short, these recipes come out as direct “restriction” (to

formal quantum subgroups or formal quantum homogeneous spaces) of those in the QDP
for formal quantum groups. This four-fold construction is fully symmetric, in particular
all duality or orthogonality relations possibly holding among different quantum objects are
preserved. Finally, Poisson duality is still involved, in that the semiclassical limit of the
output quantum object is always the coisotropic dual of the semiclassical limit of the input
quantum object.

The main purpose of the present work is to provide a suitable version of the GQDP
for global quantum subgroups and global quantum homogeneous spaces — extending the
GQDP for global quantum groups — as much general as possible. The inspiring idea,
again, is to “adapt” (by restriction, in a sense) to these more general quantum objects
the functorial recipes available from the GQDP for global quantum groups. Remarkably
enough, this approach is fully successful: indeed, it does work properly not only with strict
quantizations (which should sound natural) but also for proper and for weak ones. Even
more, the output objects always are global quantizations (of subgroups or homogeneous



spaces) of proper type — which gives an independent motivation to introduce the notion
of proper quantization.

Also in this setup, Poisson duality, in a generalized sense, shows up again as the link
between the input and the output of the GQDP recipes: namely, the semiclassical limit of
the output quantum object is always the coisotropic dual of the coisotropic interior of the
semiclassical limit of the input quantum object.

Besides the wider generality this GQDP applies to (in particular, involving also non-
coisotropic subgroups, or homogeneous spaces which are not Poisson quotients), we pay a
drawback in some lack of symmetry for the final result — compared to what one has in the
formal quantization context. Nevertheless, such a symmetry is almost entirely recovered if
one restricts to dealing with strict quantizations, or to dealing with “double quantizations”
— involving simultaneously a QFA and a QUEA in perfect (i.e. non-degenerate) pairing.

At the end of the paper (Section 6) we present some applications of our GQDP: this is
to show how it effectively works, and in particular that it does provide explicit examples
of global quantum subgroups and global quantum homogeneous spaces. Among these, we
also provide an example of a quantization which is proper but is not strict — which shows
that the former notion is a non-trivial generalization of the latter.

— — — — —
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