
Nicola CICCOLI, Fabio GAVARINI

“A global quantum duality principle

for subgroups and homogeneous spaces”

Documenta Mathematica 19 (2014), 333-380.

ABSTRACT

For a complex or real algebraic group G, with g := Lie(G) , quantizations of global type
are suitable Hopf algebras Fq[G] or Uq(g) over C

[
q, q−1

]
. Any such quantization yields a

structure of Poisson group on G, and one of Lie bialgebra on g : correspondingly, one has
dual Poisson groups G∗ and a dual Lie bialgebra g∗ . In this context, we introduce suitable
notions of quantum subgroup and, correspondingly, of quantum homogeneous space, in
three versions: weak, proper and strict (also called flat in the literature). The last two
notions only apply to those subgroups which are coisotropic, and those homogeneous spaces
which are Poisson quotients; the first one instead has no restrictions whatsoever.

The global quantum duality principle (GQDP), as developed in [12], associates with
any global quantization of G , or of g , a global quantization of g∗, or of G∗. In this pa-
per we present a similar GQDP for quantum subgroups or quantum homogeneous spaces.
Roughly speaking, this associates with every quantum subgroup, resp. quantum homoge-
neous space, of G , a quantum homogeneous space, resp. a quantum subgroup, of G∗ . The
construction is tailored after four parallel paths — according to the different ways one has
to algebraically describe a subgroup or a homogeneous space — and is “functorial”, in a
natural sense.

Remarkably enough, the output of the constructions are always quantizations of proper
type. More precisely, the output is related to the input as follows: the former is the
coisotropic dual of the coisotropic interior of the latter — a fact that extends the occurrence
of Poisson duality in the original GQDP for quantum groups. Finally, when the input
is a strict quantization then the output is strict as well — so the special rôle of strict
quantizations is respected.

We end the paper with some explicit examples of application of our recipes.

— — — — —
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