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INTRODUCTION

In his work of 1955, Chevalley provided a combinatorial construction of all simple alge-
braic groups over any field. In particular, his method led to a proof of the existence theorem
for simple algebraic groups and to new examples of finite simple groups which had escaped
the attention of specialists in group theory. The groups that Chevalley constructed are now
known as Chevalley groups. Furthermore, Chevalley’s construction provided a description
of all simple algebraic groups as group schemes over Z .

In this paper we adapt this philosophy to the setup of supergeometry, so as to give
an explicit construction of algebraic supergroups whose Lie superalgebra is of classical
type over an arbitrary field (or even ring). Our construction provides at one strike the
supergroups corresponding to the families A(m,n), B(m,n), C(n), D(m,n) of basic Lie
superalgebras and to the families of strange Lie superalgebras P (n), Q(n), as well as to
the exceptional basic Lie superalgebras F (4), G(3), D(2, 1; a) — for a ∈ Z ; cf. [ga] for
the general case. To our knowledge, supergroups corresponding to the exceptional Lie
superalgebras have not previously appeared in the literature.

To explain our work, we first revisit the whole classical construction.

Let g be a finite dimensional simple (or semisimple) Lie algebra over an algebraically
closed field K (e.g. K = C ). Fix in g a Cartan subalgebra; then a root system is defined,
and g splits into weight spaces indexed by the roots. Also, g has a special basis, called
Chevalley basis, for which the structure constants are integers, satisfying special conditions
in terms of the root system. This defines an integral form of g , called Chevalley Lie algebra.

In the universal enveloping algebra of g , there is a Z–integral form, called Kostant
algebra, with a special “PBW-like” basis of ordered monomials, whose factors are divided
powers of weight vectors and binomial coefficients of Cartan generators, corresponding to
elements of the Chevalley basis of g .

If V is a faithful g–module, there is a Z–lattice M ⊆ V , which is stable under the action
of the Kostant algebra. Hence the Kostant algebra acts on the vector space Vk := k⊗ZM
for any field k . Moreover there exists an integral form gV of g leaving the lattice invariant
and depending only on the representation V and not on the choice of the lattice.

For any root vector X of g , we take the exponential exp(tX) ∈ GL(Vk) , t ∈ k (as
X acts as nilpotent, the expression makes sense). The subgroup of GL(Vk) generated by
all the exp(tX), for all roots and all t , is the Chevalley group GV (k), as introduced by
Chevalley. This defines GV (k) set-theoretically, as an abstract group; some extra work is
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required to show it is an algebraic group and to construct its functor of points. We refer
the reader to [st], [borel], [hu] for a comprehensive treatment of all of these aspects.

We want to extend Chevalley’s construction to the supergeometric setting.

In supergeometry the best way to introduce supergroups is via their functor of points.
Unlikely the classical setting, the points over a field of a supergroup tell us very little
of the supergroup itself. In fact such points miss the odd coordinates and describe only
the classical part of the supergroup. In other words, over a field we cannot see anything
beyond classical geometry. Thus we cannot generalize Chevalley’s recipe as it is, but we
need to suitably and subtly modify it introducing the functor of points language right at
the beginning, reversing the order in which the classical treatment was developed.

The functor of points approach realizes an affine supergroup as a representable functor
from the category of commutative superalgebras (salg) to the category of groups (groups) .
In this work, we shall first construct a functor from (salg) to (groups) , and then we shall
prove it is representable.

Our initial datum is a simple Lie superalgebra of classical type (or a direct sum of finitely
many of them, if one prefers), say g : in our construction it plays the role of the simple (or
semisimple) Lie algebra in Chevalley’s setting. We start by proving some basic results on
g (previously known only partially, cf. [ik,sw]) like the existence of Chevalley bases, and a
PBW-like theorem for the Kostant Z–form of the universal enveloping superalgebra.

Next we take a faithful g–module V , and we show that there exists a lattice M in
V fixed by the Kostant superalgebra and also by a certain integral form gV of g , which
again depends on V only. We then define a group-valued functor GV , from the category
of commutative superalgebras to the category of sets, as follows. For any commutative
superalgebra A, GV (A) is the subgroup of GL(V (A)) — the general linear supergroup on
V — generated by the homogeneous one-parameter unipotent subgroups (acting on M )
associated to the root vectors, together with the multiplicative one-parameter subgroups
(formally corresponding to exponentials of elements in the Cartan subalgebra). In this
supergeometric setting, one must carefully define the homogeneous one-parameter sub-
groups, which may have three possible superdimensions: 1|0 , 0|1 and 1|1 . This also will
be discussed.

As a group-theoretical counterpart of the Z2–splitting g = g0 ⊕ g1 , we find a factor-
ization GV (A) = G0(A)G<

1 (A)
∼= G0(A) × G<

1 (A) . Here G0(A) is (roughly) a classical
Chevalley-like group attached to g0 and V , while G<

1 (A) may be euristically thought
of as exponential of A1 ⊗ g1 . In fact we show that the functor G1 : A 7→ G1(A)

is representable and isomorphic to A0|dim(g1)
k .

Actually, our result is more precise: indeed, g1 in turn splits into g1= g+1 ⊕ g−1 according
to the splitting of odd roots into positive and negative ones, and so at the group level we
have G<

1 (A)
∼= G−,<

1 (A)×G+,<
1 (A) and G(A) ∼= G−,<

1 (A)×G0(A)×G+,<
1 (A) , resembling

the classical “big cell” decomposition, which however in this context holds globally.

Despite the analogy with Chevalley construction, GV is not a representable functor,
hence it is not an algebraic supergroup. This is a phenomenon already observed at the
classical level: one-parameter subgroups, defined via their functor of points, do not generate
Chevalley groups over an arbitrary commutative ring. Hence we need to consider the
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sheafification GV of the functor GV , which coincides with GV on local superalgebras (we
provide at the end an appendix with a brief treatment of sheafification of functors). In
particular, GV inherits the factorization GV = G0 G1

∼= G0 × G1 , with G1 = G1

and G0 being a classical (reductive) Chevalley-like group-scheme associated to g0 and V .

More in detail, we find the finer factorization GV (A) = G0(A) × G−,<
1 (A) × G+,<

1 (A)

with G1(A) = G−,<
1 (A)×G+,<

1 (A) and G±,<
1 (A) = G±,<

1 (A) . As G1 = G1 and G0 are
representable, the above factorization implies that GV is representable too, and so it is an
algebraic supergroup. We then take it to be, by definition, our “Chevalley supergroup”.

In the end, we prove the functoriality in V of our construction, and that, over any field
k , the Lie superalgebra Lie(GV ) is just k⊗ gV as one expects.

— — — — —
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