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INTRODUCTION

Let G be a semisimple, connected, simply connected affine algebraic group over Q ,
and g its tangent Lie algebra. Let Uq(g) be the Drinfeld-Jimbo quantum group over g
defined (after Jimbo) as a Hopf algebra over the field Q(q) , where q is an indeterminate.
After Lusztig, one has an integral form over Z

[
q, q−1

]
, say Uq(g) , which for q → 1

specializes to UZ(g) , the integral Z–form of U(g) defined by Kostant (see [CP], §9.3,
and references therein, and [DL], §§2–3). As UZ(g) is usually called “hyperalgebra”, we
call Uq(g) “quantum” (or quantized) hyperalgebra”. In particular, as UZ(g) is generated
by divided powers (in the simple root vectors) and binomial coefficients (in the simple
coroots) so Uq(g) is generated by quantum analogues of divided powers and of binomial
coefficients. Moreover, if ε is a root of 1 with odd order ℓ , if Zε is the formal extension
of Z by ϵ (see §1.4) and U ε(g) is the corresponding specialization of Uq(g) , there is a

Hopf algebra epimorphism FrZg : U ε(g) −−� Zε ⊗Z UZ(g) , described as an “ℓ-th root
operation” on generators. This is a quantum analogue of the Frobenius morphism in
positive characteristic, so is called quantum Frobenius morphism for g .

In a Hopf-dual setting, one constructs ([DL], §§4–6) a Hopf algebra Fq[G] of matrix
coefficients of Uq(g) , and a Z

[
q, q−1

]
–form Fq[G] of it which specializes to FZ[G] (the

algebra of regular functions over GZ , the algebraic scheme of Z–points of G ) as a Hopf
algebra, for q → 1 . In particular, Fq[G] is nothing but the set of “functions” in Fq[G]
which take values in Z

[
q, q−1

]
when “evaluated” on Uq(g) : in a word, the Z

[
q, q−1

]
–

valued functions on Uq(g) . When specializing at roots of 1 (with notation as above)

there is a Hopf algebra monomorphism FrZG : FZ[G] ↪−−−→ Fε[G] dual to the above
epimorphism and described, roughly, as an “ℓ-th power operation” on generators. This
also is a quantum analogue of the classical Frobenius morphism, which is therefore called
the quantum Frobenius morphism for G .

The quantization Uq(g) of UZ(g) endows the latter with a co-Poisson (Hopf) algebra
structure which makes g into a Lie bialgebra; similarly, Fq[G] endows FZ[G] with a Poisson
(Hopf) algebra structure which makes G into a Poisson group. The Lie bialgebra structure
on g is exactly the one induced by the Poisson structure on G . Then one can consider the
dual Lie bialgebra g∗, and dual Poisson groups G⋆ having g∗ as tangent Lie bialgebra.

Lusztig’s Z
[
q, q−1

]
–integral forms Uq(g) and Fq[G] are said to be restricted. On the

other hand, another Z
[
q, q−1

]
–integral form of Uq(g) , say Uq(g), has been introduced

by De Concini and Procesi (cf. [CP], §9.2, and [DP], §12.1 — the original construction
is over C

[
q, q−1

]
, but it works the same over Z

[
q, q−1

]
too), called unrestricted. It is

generated by suitably rescaled quantum root vectors and by toral quantum analogues of
1
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simple root vectors, and for q → 1 specializes to FZ[G
∗] (notation as before). Moreover,

at roots of 1 there is a Hopf algebra monomorphism Fr Z
g : FZ[G

∗] = U1(g) ↪−→ Uε(g) ,
defined on generators as an “ℓ-th power operation”. This is a quantum analogue of the
classical Frobenius morphisms (for G∗), strictly parallel to Fr Z

g above, so is called the
quantum Frobenius morphism for G∗ . In the Hopf-dual setting, one can consider —
[Ga1], §§4, 7 — as “dual” of Uq(g) the subset Fq[G] of “functions” in Fq[G] which take
values in Z

[
q, q−1

]
when “evaluated” on Uq(g) ; this subset is a Hopf subalgebra, which for

q → 1 specializes to UZ(g
∗) . When specializing at roots of 1 there is a Hopf epimorphism

Fr Zε

G : Fε[G] −−−� Zε ⊗Z UZ(g
∗) , dual to the previous monomorphism; this again is

a quantum analogue of the classical Frobenius morphism (for g∗ ), hence it is called the
quantum Frobenius morphism for g∗ .

In this paper we provide an explicit description of Fq[G] , its specializations at roots

of 1 and its quantum Frobenius morphisms Fr Zε

G for G = SLn . The whole construction
makes sense for G = GLn and G = Mn (the Poisson algebraic monoid of square matrices
of size n ) too, and we find similar results for them. In fact, we first approach the case
of Fq[Mn] , for which the strongest results are found; then from these we get those for
Fq[GLn] and Fq[SLn] .

Our starting point is the well-known description of Fq[Mn] by generators and rela-
tions, as a Z

[
q, q−1

]
–algebra generated by the entries of a quantum (n × n)–matrix (see

[APW], Appendix). In particular, this is an algebra of skew-commutative polynomials,
much like Uq(g) is just an algebra of skew-commutative polynomials (which are Laurent
in some variables). Dually, this leads us to expect that, like Uq(gln) , also Fq[Mn] be
generated by quantum divided powers and quantum binomial coefficients: also, we ex-
pect that a suitable PBW-like theorem holds for Fq[Mn] , like for Uq(gln) . Similarly, as

FrZMn
: FZ[Mn] ↪−→ Fε[Mn] is defined on generators as an “ℓ-th power operation”, dually

we expect that Fr Zε

Mn
: Fε[Mn] −−� Zε ⊗ZUZ

(
gl ∗n

)
be given by an “ℓ–th root operation”,

much like FrZε

gln
: U ε(gln) −−� Zε ⊗Z UZ(gln) .

In fact, all these conjectural expectations turn out to be true.

From this we get similar (yet slightly weaker) results for Fq[GLn] and Fq[SLn] . On the
way, we also improve the (already known) above mentioned results about specializations
and quantum Frobenius epimorphisms.

The intermediate step is the quantum group Uq(g
∗) , analogue for g∗ of what Uq(g) is

for g (see [Ga1], §6). In particular, there are integral Z
[
q, q−1

]
–forms Uq(g

∗) and Uq(g
∗)

of Uq(g
∗) for which PBW theorems and presentations hold. Moreover, a Hopf algebra

embedding Fq[Mn] ↪−→ Uq

(
gln

∗) exists, via which we “pull back” a PBW-like basis and

a presentation from Uq

(
gln

∗) to Fq[Mn] . These arguments work, mutatis mutandis, for
GLn and SLn as well. As aside results, we provide (in §3) explicit descriptions of these
embeddings, and related results which turn useful in studying specializations at roots of 1.

The present work bases upon the analysis of the case n = 2 , which is treated in [GR].

acknowledgments

The authors thank the referee of Journal of Algebra for his/her careful analysis of the
work, and the number of valuable suggestions he/she offered to improve the paper.



3

dedicatory
This work grew out of a cooperation supported by an official agreement between the

Department of Mathematics of the University of Rome “Tor Vergata” and the Faculty
of Mathematics of the University of Belgrade in the period 2000–2003. Such agreement
was the outcome of a common wish of peaceful, fruitful partnership, as an answer to the
military aggression of NATO countries to the Federal Republic of Yugoslavia, which started
in spring of 1999. This paper is dedicated to the memory of all victims of that war.

— — — — —

References

[APW] H. H. Andersen, P. Polo, K. Wen, Representations of quantum algebras, Inventiones Mathematicæ
104 (1991), 1–59.

[BGY] K. A. Brown, K. R. Goodearl, M. Yakimov, Poisson structures on affine spaces and flag varieties.
I. Matrix affine Poisson space, Advances in Mathematics 206 (2006), 567–629.

[CP] V. Chari, A. Pressley, A guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1994.

[DL] C. De Concini, V. Lyubashenko, Quantum function algebra at roots of 1, Advances in Mathematics

108 (1994), 205–262.

[DP] C. De Concini, C. Procesi, Quantum groups, D-modules, Representation Theory, and Quantum
Groups (L. Boutet de Monvel, C. De Concini, C. Procesi, P. Schapira, M. Vergne, eds.), Lecture
Notes in Mathematics 1565, Springer-Verlag, Berlin–Heidelberg–New York, 1993, pp. 798–820.

[Ga1] F. Gavarini, Quantization of Poisson groups, Pacific Journal of Mathematics 186 (1998), 217–266.

[Ga2] , Quantum function algebras as quantum enveloping algebras, Communications in Algebra
26 (1998), 1795–1818.

[Ga3] , Presentation by Borel subalgebras and Chevalley generators for quantum enveloping al-
gebras, Proceedings of the Edinburgh Mathematical Society 49 (2006), 291–308.

[Ga4] , PBW theorems and Frobenius structures for quantum matrices, electronic preprint posted
at http://arxiv.org/abs/math.QA/0610691 (2006), 9 pages.
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