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ABSTRACT

Let R be an integral domain, let ~ ∈ R \ {0} be such that k := R
/
~R is a field, and

let HA be the category of torsionless (or flat) Hopf algebras over R . We call H ∈ HA
a “quantized function algebra” (=QFA), resp. “quantized restricted universal enveloping al-
gebras” (=QrUEA), at ~ if — roughly speaking — H

/
~H is the function algebra of a

connected Poisson group, resp. the (restricted, if R
/
~R has positive characteristic) uni-

versal enveloping algebra of a (restricted) Lie bialgebra. Extending a result of Drinfeld, we
establish an “inner” Galois’ correspondence on HA , via two endofunctors, ( )∨ and ( )′, of
HA such that H∨ is a QrUEA and H ′ is a QFA (for all H∈ HA ). In addition:

(a) the image of ( )∨, resp. of ( )′, is the full subcategory of all QrUEAs, resp. QFAs;

(b) if p := Char(k) = 0 , the restrictions ( )∨
∣∣
QFAs

and ( )′
∣∣
QrUEAs

yield equivalences

inverse to each other;

(c) if p = 0 , starting from a QFA over a Poisson group G, resp. from a QrUEA over a
Lie bialgebra g , the functor ( )∨, resp. ( )′, gives a QrUEA, resp. a QFA, over the dual Lie
bialgebra, resp. the dual Poisson group.

Several, far-reaching applications are developed in detail in [Ga2–4].
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