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INTRODUCTION

Let g be a semisimple Lie algebra over a field k . Classically, it has two standard
presentations: Serre’s one, which uses a minimal set of generators, and Chevalley’s one,
using a linear basis as generating set. If g instead is reductive a presentation is obtained by
that of its semisimple quotient by adding the center. When g = gln , Chevalley’s generators
are the elementary matrices, and Serre’s ones form a distinguished subset of them; the
general case of any classical matrix Lie algebra g is a slight variation on this theme. Finally,
both presentations yield also presentations of U(g) , the universal enveloping algebra of g .

At the quantum level, one has correspondingly a Serre-like and a Chevalley-like presen-
tation of Uq(g) , the quantized universal enveloping algebra associated to g after Jimbo and
Lusztig (i.e. defined over the field k(q) , where q is an indeterminate). The first presenta-
tion is used by Jimbo (cf. [Ji1]) and Lusztig (see [Lu2]) and, mutatis mutandis, by Drinfeld
too; in this case the generators are q–analogues of the Serre’s generators, and starting from
them one builds quantum root vectors via two different methods: iterated quantum brack-
ets, as in [Ji2] — and maybe others — or braid group action, like in [Lu2]; see [Ga2]
for a comparison between these two methods. The second presentation was introduced
by Faddeev, Reshetikhin and Takhtajan (in [FRT]): the generators in this case, called
L–operators, are q–analogues of the classical Chevalley generators; in particular, they are
quantum root vectors themselves. An explicit comparison between quantum Serre-like
generators and L–operators appears in [FRT], §2, for the cases of classical g ; on the other
hand, in [No], §1.2, a similar comparison is made for g = gln between L–operators and
quantum root vectors (for any root) built out of Serre’s generators.

The first purpose of this note is to provide an alternative approach to the FRT presen-
tation of Uq(g) : it amounts to a series of elementary steps, yet the final outcome seems
noteworthy. As a second, deeper result, we give an explicit presentation of the k

[
q, q−1

]
–

subalgebra of Uq(g) generated by L–operators, call it Ũq(g) . By construction, this is
nothing but the unrestricted k

[
q, q−1

]
–integer form of Uq(g) , defined by De Concini and

Procesi (see [DP]), whose semiclassical limit is Ũq(g)
/
(q−1) Ũq(g) ∼= F

[
G∗] , where G∗

is a connected Poisson algebraic group dual to g (cf. [DP], [Ga1] and [Ga3], §7.3 and §7.9):
our explicit presentation of Ũq(g) yields another, independent (and much easier) proof of
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this fact. Third, by [DP] we know that quantum Frobenius morphisms exist, which em-

bed F
[
G∗] into the specializations of Ũq(g) at roots of 1: then our presentation of Ũq(g)

provides an explicit description of them.
This analysis shows that the two presentations of Uq(g) correspond to different behaviors

w.r.t. to specializations. Indeed, let Ûq(g) be the k
[
q, q−1

]
–algebra given by Jimbo-Lusztig

presentation over k
[
q, q−1

]
. Its specialization at q = 1 is Ûq(g)

/
(q−1) Ûq(g) ∼= U(g)

(up to technicalities), with g inheriting a Lie bialgebra structure (see [Ji1], [Lu2], [DL]). On

the other hand, the integer form Ũq(g) mentioned above specializes to F
[
G∗] , the Poisson

structure on G∗ being exactly the one dual to the Lie bialgebra structure on g . So the
existence of two different presentations of Uq(g) reflects the deep fact that Uq(g) provides,
taking suitable integer forms, quantizations of two different semiclassical objects (this is a
general fact, see [Ga3–4]). To the author’s knowledge, this was not known so far, as the

FRT presentation of Uq(g) was never used to study the integer form Ũq(g) .
Let’s sketch in short the path we follow. First, we note that Uq(g) is generated by

the quantum Borel subgroups Uq(b−) and Uq(b+) (where b− and b+ are opposite Borel
subalgebras of g), which share a common copy of the quantum Cartan subgroup Uq(t) .
Second, there exist Hopf algebra isomorphisms Uq(b−) ∼= Fq

[
B−

]
and Uq(b+) ∼= Fq

[
B+

]
,

where Fq

[
B−

]
and Fq

[
B+

]
are the quantum function algebras associated to b− and b+

respectively. Third, when g is classical we resume the explicit presentation by generators
and relations of Fq

[
B−

]
and Fq

[
B+

]
, as given in [FRT], §1. Fourth, from the above we

argue a presentation of Uq(g) where the generators are those of Fq

[
B−

]
and Fq

[
B+

]
, the

toral ones being taken only once, and relations are those of these quantum function algebras
plus some additional relations between generators of opposite quantum Borel subgroups.
We perform this last step in full detail for g = gln and, with slight changes, for g = sln
as well. Fifth, we refine the last step to provide a presentation of Ũq(g) .

As an application, our results apply also (with few changes) to the Drinfeld-like quan-
tum groups U~(g) : in particular we get a presentation of an ~–deformation of F [G∗] ,

say Ũ~(g) =: F~[G
∗] . An explicit gauge equivalence between this F~[G

∗] and the ~–
deformation provided by Kontsevitch recipe is given in [FG].
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