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ABSTRACT

We provide an alternative approach to the Faddeev-Reshetikhin-Takhtajan presentation
of the quantum group Uq(g), with L–operators as generators and relations ruled by an R–
matrix. We look at Uq(g) as being generated by the quantum Borel subalgebras Uq(b+) and
Uq(b−), and use the standard presentation of the latters as quantum function algebras.
When g = gln these Borel quantum function algebras are generated by the entries of
a triangular q–matrix, thus eventually Uq(gln) is generated by the entries of an upper
triangular and a lower triangular q–matrix, which share the same diagonal. The same
elements generate over k

[
q, q−1

]
the unrestricted k

[
q, q−1

]
–integer form of Uq(gln) of De

Concini and Procesi, which we present explicitly, together with a neat description of the
associated quantum Frobenius morphisms at roots of 1. All this holds, mutatis mutandis,
for g = sln too.

— — — — —
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