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ABSTRACT

We give functorial recipes to get, out of any Hopf algebra over a field, two pairs of Hopf
algebras with some geometrical content. If the ground field has characteristic zero, the first
pair is made of a function algebra F [G+] over a connected Poisson group and a universal
enveloping algebra U(g−) over a Lie bialgebra g− . In addition, the Poisson group as a
variety is an affine space, and the Lie bialgebra as a Lie algebra is graded. Forgetting these
last details, the second pair is of the same type, namely

(
F [K+] , U(k−)

)
for some Poisson

group K+ and some Lie bialgebra k− . When the Hopf algebra H we start from is already
of geometric type, the result involves Poisson duality. The first Lie bialgebra associated to
H = F [G] is g∗ (with g := Lie (G) ), and the first Poisson group associated to H = U(g)
is of type G∗, i.e. it has g as cotangent Lie bialgebra. If the ground field has positive
characteristic, the same recipes give similar results, but the Poisson groups obtained have
dimension 0 and height 1, and restricted universal enveloping algebras are obtained. We
show how these geometrical Hopf algebras are linked to the initial one via 1-parameter
deformations, and explain how these results follow from quantum group theory. Finally,
we examine in detail the case of group algebras.
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239.
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