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INTRODUCTION

“A series of outlaws joined and formed the Nottingham group,
whose renowned chieftain was the famous Robin Hopf”

N. Barbecue, “Robin Hopf”

The most general notion of “symmetry” in mathematics is encoded in the notion of Hopf
algebra. Then, among all Hopf algebras (over a field k), there are two special families which
are of relevant interest for their geometrical meaning: assuming for simplicity that k have
zero characteristic, these are the function algebras F [G] of algebraic groups G and the
universal enveloping algebras U(g) of Lie algebras g . Function algebras are exactly those
Hopf algebras which are commutative, and enveloping algebras those which are connected
(in the general sense of Hopf algebra theory) and cocommutative.

Given a Hopf algebra H, encoding some generalized symmetry, one can ask whether
there are any other Hopf algebras “close” to H, which are of either one of the above
mentioned geometrical types, hence encoding geometrical symmetries associated to H.
The answer is affirmative: namely (see [Ga4]), it is possible to give functorial recipes
to get out of any Hopf algebra H two pairs of Hopf algebras of geometrical type, say(
F [G+], U(g−)

)
and

(
F [K+], U(k−)

)
. Moreover, the algebraic groups thus obtained are

connected Poisson groups, and the Lie algebras are Lie bialgebras; therefore in both cases
Poisson geometry is involved. In addition, the two pairs above are related to each other
by Poisson duality (see below), thus only either one of them is truly relevant. Finally,
these four “geometrical” Hopf algebras are “close” to H in that they are 1-parameter
deformations (with pairwise isomorphic fibers) of a quotient or a subalgebra of H.

The method above to associate Poisson geometrical Hopf algebras to general Hopf al-
gebras, called “Crystal Duality Principle” (CDP in short), is explained in detail in [Ga4].
It is a special instance of a more general result, the “Global Quantum Duality Principle”
(GQDP in short), explained in [Ga2–3], which in turn is a generalization of the “Quantum
Duality Principle” due to Drinfeld (cf. [Dr], §7, and see [Ga1] for a proof).

Drinfeld’s QDP deals with quantum universal enveloping algebras (QUEAs in short) and
quantum formal series Hopf algebras (QFSHAs in short) over the ring of formal power series
k[[~]]. A QUEA is any topologically free, topological Hopf k[[~]]–algebra whose quotient
modulo ~ is the universal enveloping algebra U(g) of some Lie algebra g ; in this case we
denote the QUEA by U~(g). Instead, a QFSHA is any topological Hopf k[[~]]–algebra of

type k[[~]]S (as a k[[~]]–module, S being a set) whose quotient modulo ~ is the function
algebra F [[G]] of some formal algebraic group G ; then we denote the QFSHA by F~[[G]] .

1



2

The QDP claims that the category of all QUEAs and the category of all QFSHAs are
equivalent, and provides an equivalence in either direction. From QFSHAs to QUEAs it
goes as follows: given a QFSHA, say F~[[G]], let J be its augmentation ideal (the kernel
of its counit map) and set Fh[[G]]

∨
:=

∑
n≥0 ~−nJn . Then F~[[G]] 7→ Fh[[G]]

∨
defines

(on objects) a functor from QFSHAs to QUEAs. To go the other way round, i.e. from
QUEAs to QFSHAs, one uses a perfectly dual recipe. Namely, given a QUEA, say U~(g),
let again J be its augmentation ideal; for each n ∈ N , let δn be the composition of the
n–fold iterated coproduct followed by the projection onto J⊗n (this makes sense since

U~(g) = k[[~]]·1U~(g) ⊕ J ): then set U~(g)
′
:=

∩
n≥0 δn

−1(~nU~(g)
⊗n)

, or more explicitly

U~(g)
′
:=

{
η ∈ U~(g)

∣∣ δn(η) ∈ ~nU~(g)
⊗n

, ∀n ∈ N
}
. Then U~(g) 7→ U~(g)

′
defines (on

objects) a functor from QUEAs to QFSHAs. The functors ( )
∨
and ( )

′
are inverse to each

other, hence they provide the claimed equivalence.
Note that the objects (QUEAs and QFSHAs) involved in the QDP are quantum groups;

their semiclassical limits then are endowed with Poisson structures: namely, every U(g) is
in fact a co-Poisson Hopf algebra and every F [[G]] is a (topological) Poisson Hopf algebra.
The geometrical structures they describe are then Lie bialgebras and Poisson groups. The
QDP then brings further information: namely, the semiclassical limit of the image of a given
quantum group is Poisson dual to the Poisson geometrical object we start from. In short

Fh[[G]]
∨
/
~Fh[[G]]

∨
= U(g×) , i.e. (roughly) Fh[[G]]

∨
= U~(g

×) (I.1)

where g× is the cotangent Lie bialgebra of the Poisson group G , and

U~(g)
′
/
~U~(g)

′
= F

[[
G⋆

]]
, i.e. (roughly) U~(g)

′
= F~

[[
G⋆

]]
(I.2)

where G⋆ is a connected Poisson group with cotangent Lie bialgebra g . So the QDP invol-
ves both Hopf duality (switching enveloping and function algebras) and Poisson duality.

The generalization from QDP to GQDP stems from a simple observation: the construc-
tion of Drinfeld’s functors needs not to start from quantum groups! Indeed, in order to
define either H∨ or H ′ one only needs that H be a torsion-free Hopf algebra over some
1-dimensional doamin R and ~ ∈ R be any non-zero prime (actually, even less is truly
necessary, see [Ga2–3]). On the other hand, the outcome still is, in both cases, a “quantum
group”, now meant in a new sense. Namely, a QUEA now will be any torsion-free Hopf

algebra H over R such that H
/
~H ∼= U(g) , for some Lie (bi)algebra g . Also, instead of

QFSHAs we consider “quantum function algebras”, QFAs in short: here a QFA will be any

torsion-free Hopf algebra H over R such that H
/
~H ∼= F [G] (plus one additional tech-

nical condition) for some connected (Poisson) group G . In this new framework Drinfeld’s
recipes give that H∨ is a QUEA and H ′ is a QFA, whatever is the torsion-free Hopf R–
algebra H one starts from. Moreover, when restricted to quantum groups Drinfeld’s func-
tors ( )

∨
and ( )

′
again provide equivalences of quantum group categories, respectively from

QFAs to QUEAs and viceversa; then Poisson duality is involved once more, like in (I.1–2).
Therefore, the generalization process from the QDP to the GQDP spreads over several

concerns. Arithmetically, one can take as (~) any non-generic point of the spectrum of
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R , and define Drinfeld’s functors and specializations accordingly; in particular, the cor-
responding quotient field k~ := R

/
~R might have positive characteristic. Geometrically,

one considers algebraic groups rather than formal groups, i.e. global vs. local objects. Al-
gebraically, one drops any topological worry (~–adic completeness, etc.), and deals with
general Hopf algebras rather than with quantum groups. This last point is the one of
most concern to us now, in that it means that we have (functorial) recipes to get several
quantum groups, hence — taking semiclassical limits — Poisson geometrical symmetries,
springing out of the “generalized symmetry” encoded by a torsion-free Hopf algebra H over
R : namely, for each non-trivial point of the spectrum of R , the quantum groups H∨ and
H ′ given by the corresponding Drinfeld’s functors. Note, however, that a priori nothing
prevents any of these H∨ or H ′ or their semiclassical limits to be (essentially) trivial.

The CDP comes out when looking at Hopf algebras over a field k , and then applying
the GQDP to their scalar extensions H[~] := k[~] ⊗k H with R := k[~] (and ~ := ~
itself). A first application of Drinfeld’s functors to H~ := H[~] followed by special-
ization at ~ = 0 provides the pair

(
F [G+] , U(g−)

)
mentioned above: in a nutshell,(

F [G+] , U(g−)
)
=

(
H~
′∣∣
~=0

,H~
∨∣∣

~=0

)
, where hereafter X

∣∣
~=0

:= X
/
~X . Then ap-

plying once more Drinfeld’s functors to H~
∨ and to H~

′ and specializing at ~ = 0 yields

the pair
(
F [K+] , U(k−)

)
, namely

(
F [K+] , U(k−)

)
=

((
H~
∨)′∣∣∣

~=0
,
(
H~
′)∨∣∣∣

~=0

)
. Finally,

the very last part of the GQDP explained before implies that K+ = G ⋆
− and k− = g×+ .

While in the second step above one really needs the full strength of the GQDP, for the
first step instead it turns out that the construction of Drinfeld’s functors on H[~] , can be
fully “tracked through” and described at the “classical level”, i.e. in terms of H alone. In
addition, the exact relationship among H and the pair

(
F [G+] , U(g−)

)
can be made quite

clear, and more information is available about this pair. We now sketch it in some detail.

Let J be the augmentation ideal of H, let J :=
{
Jn

}
n∈N be the associated (de-

creasing) J–adic filtration, Ĥ := GJ(H) the associated graded vector space and H∨ :=

H
/∩

n∈N Jn . One can prove that J is a Hopf algebra filtration, hence Ĥ is a graded Hopf

algebra. The latter happens to be connected and cocommutative, so Ĥ ∼= U(g−) for some

Lie algebra g− ; in addition, since Ĥ is graded also g− itself is graded as a Lie algebra. The

fact that Ĥ be cocommutative allows to define on it a Poisson cobracket which makes Ĥ
into a graded co-Poisson Hopf algebra; eventually, this implies that g− is a Lie bialgebra.

The outcome is that our U(g−) is just Ĥ.

On the other hand, one considers a second (increasing) filtration defined in a dual

manner to J , namely D :=
{
Dn := Ker (δn+1)

}
n∈N . Let now H̃ := GD(H) be the

associated graded vector space and H ′ :=
∪

n∈N Dn . Again, one shows that D is a Hopf

algebra filtration, hence H̃ is a graded Hopf algebra. Moreover, the latter is commutative,

so H̃ = F [G+] for some algebraic group G+ . One proves also that H̃ = F [G+] has no

non-trivial idempotents, thus G+ is connected; in addition, since Ĥ is graded, G+ as a

variety is just an affine space. The fact that H̃ be commutative allows to define on it a

Poisson bracket which makes H̃ into a graded Poisson Hopf algebra: this means that G+

is an algebraic Poisson group. Thus eventually F [G+] is just H̃.
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The relationship among H and the “geometrical” Hopf algebras Ĥ and H̃ can be ex-
pressed in terms of “reduction steps” and regular 1-parameter deformations, namely

H̃
0← ~→ 1←−−−−−−−→
R~

D(H)
H ′ ↪−−→ H −−� H∨

1← ~→ 0←−−−−−−−→
R~

J (H
∨)

Ĥ (I.3)

where one-way arrows are Hopf algebra morphisms and two-ways arrows are regular 1-para-
meter deformations of Hopf algebras, realized through the Rees Hopf algebras R~

D(H) and

R~
J(H

∨) associated to the filtration D of H and to the filtration J of H∨. Hereafter “reg-
ular” for a deformation means that all its fibers are pairwise isomorphic as vector spaces.
In classical terms, (I.3) comes directly from the construction above; on the other hand, in
terms of the GQDP it comes from the fact that R~

D(H) = H~
′ and R~

J(H
∨) = H~

∨ .

As we mentioned above, next step is the “application” of (suitable) Drinfeld’s functors
to the Rees algebras R~

D(H) = H~
′ and R~

J(H
∨) = H~

∨ occurring in (I.3). The outcome

is a second frame of regular 1-parameter deformations for H ′ and H∨, namely

U
(
g×+

)
= U(k−)

0← ~→ 1←−−−−−−−→
(H′

~)
∨

H ′ ↪−→ H −−� H∨
1← ~→ 0←−−−−−−−→
(H∨

~ )′
F [K+] = F

[
G ⋆
−
]
(I.4)

which is the analogue of (I.3). In particular, when H∨ = H = H ′ from (I.3) and (I.4)
together we find H as the mid-point of four deformation families, whose “external points”
are Hopf algebras of “Poisson geometrical” type, namely

U(g−)
0← ~→ 1←−−−−−−−−→

H∨
~

H
1← ~→ 0←−−−−−−−−→

(H∨
~ )′

F
[
G ⋆
−
]∣∣∣∣∣∣ (z)

F [G+]
0← ~→ 1←−−−−−−−−→

H′
~

H
1← ~→ 0←−−−−−−−−→
(H′

~)
∨

U
(
g×+

)
which gives four different regular 1-parameter deformations fromH to Hopf algebras encod-
ing Poisson geometrical objects. Then each of these four Hopf algebras may be thought of
as a semiclassical geometrical counterpart of the “generalized symmetry” encoded by H.

The purpose of the present paper is to show the effectiveness of the CDP, applying it to
a key example, the Hopf algebra of non-commutative formal diffeomorphisms of the line.
Indeed, the interest of the latter, besides its own reasons, grows bigger as we can see it as
a toy model for a broad family of Hopf algebras of great concern in mathematical physics,
non-commutative geometry and beyond. Now I go and present the results of this paper.

Let Gdif be the set of all formal power series starting with x with coefficients in a field k of
zero characteristic. Endowed with the composition product, this is an infinite dimensional
prounipotent proalgebraic group — known as the “(normalised) Nottingham group” among
group-theorists and the “(normalised) group of formal diffeomorphisms of the line” among
mathematical physicists — whose tangent Lie algebra is a special subalgebra of the one-
sided Witt algebra. The function algebra F

[
Gdif

]
is a graded, commutative Hopf algebra

with countably many generators, which admits a neat combinatorial description.
In [BF] a non-commutative version of F

[
Gdif

]
is introduced: this is a non-commutative

non-cocommutative Hopf algebra Hdif which is presented exactly like F
[
Gdif

]
but drop-

ping commutativity, i.e. taking the presentation as one of a unital associative — and not
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commutative — algebra; in other words, Hdif is the outcome of applying to F
[
Gdif

]
a raw

“disabelianization” process. In particular, H = Hdif is graded and verifies H∨ = H = H ′ ,
hence the scheme (z) makes sense and yields four Poisson symmetries associated to Hdif .

Note that in each line in (z) there is essentially only one Poisson geometry involved,
since Poisson duality relates mutually opposite sides; thus any classical symmetry on the
same line carries as much information as the other one (but for global-to-local differences).
Nevertheless, in the case of H = Hdif we shall prove that the pieces of information
from either line in (z) are complementary, because G+ and G ⋆

− happen to be isomorphic
as proalgebraic Poisson varieties but not as groups. In particular, we find that the Lie
bialgebras g− and g×+ are both isomorphic as Lie algebras to the free Lie algebra L(N+)
over a countable set, but they have different, non-isomorphic Lie coalgebra structures.
Moreover, G ⋆

−
∼= Gdif × N ∼= G+ as Poisson varieties, where N is a proaffine Poisson

variety whose coordinate functions are in bijection with a basis of the derived subalgebra
L(N+); indeed, the latter are obtained by iterated Poisson brackets of coordinate functions
on Gdif, in short because both F

[
G ⋆
−
]
and F

[
G+

]
are freely generated as Poisson algebras

by a copy of F
[
Gdif

]
. For G ⋆

− we have a more precise result, namely G ⋆
−
∼= Gdif nN (a

semidirect product) as proalgebraic groups: thus in a sense G ⋆
− is the free Poisson group

over Gdif, which geometrically speaking is obtained by “pasting” to Gdif all 1-parameter
subgroups freely obtained via iterated Poisson brackets of those of Gdif ; in particular,
these Poisson brackets iteratively yield 1-parameter subgroups which generate N .

We perform the same analysis simultaneously for Gdif, for its subgroup of odd formal
diffeomorphisms and for all the groups Gν of truncated (at order ν ∈ N+) formal diffeomor-
phisms, whose projective limit is Gdif itself; mutatis mutandis, the results are the like.

The case of Hdif is just one of many samples of the same type: indeed, several cases of
Hopf algebras built out of combinatorial data — graphs, trees, Feynman diagrams, etc. —
have been introduced in (co)homological theories (see e.g. [LR] and [Fo1–2], and references
therein) and in renormalization studies (see [CK1–3]); in most cases these algebras —
or their (graded) duals — are commutative polynomial, like F

[
Gdif

]
, and admit non-

commutative analogues (thanks to [Fo1–2]), so our discussion apply almost verbatim to
them too, with like results. Thus the given analysis of the “toy model” Hopf algebra Hdif

can be taken as a general pattern for all those cases.

— — — — —
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