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ABSTRACT

Let Gdif be the group of all formal power series starting with x with coefficients in
a field k of zero characteristic (with the composition product), and let F

[
Gdif

]
be its

function algebra. In [BF] a non-commutative, non-cocommutative graded Hopf algebra
Hdif was introduced via a direct process of “disabelianisation” of F

[
Gdif

]
, taking the

like presentation of the latter as an algebra but dropping the commutativity constraint. In
this paper we apply a general method to provide four one-parameters deformations of Hdif,
which are quantum groups whose semiclassical limits are Poisson geometrical symmetries
such as Poisson groups or Lie bialgebras, namely two quantum function algebras and two
quantum universal enveloping algebras. In particular the two Poisson groups are extensions
of Gdif, isomorphic as proalgebraic Poisson varieties but not as proalgebraic groups.
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