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INTRODUCTION

Among all Hopf algebras over a field k, there are two special families which are of rele-
vant interest for their geometrical meaning. The function algebras F [G] of algebraic groups
G and the universal enveloping algebras U(g) of Lie algebras g, if Char (k) = 0 , or the re-
stricted universal enveloping algebras u(g) of restricted Lie algebras g, if Char (k) > 0 ; to
be short, we call both the latters “enveloping algebras” and denote them by U(g), and sim-
ilarly by “restricted Lie algebra” when Char (k) = 0 we shall simply mean “Lie algebra”.
Function algebras are exactly those Hopf algebras which are commutative, and enveloping
algebras those which are connected, cocommutative and generated by their primitives.

In this paper we give functorial recipes to get, out of any Hopf algebra, two pairs of
Hopf algebras of geometrical type, namely one pair

(
F [G+],U(g−)

)
and a second pair(

F [K+],U(k−)
)
. In addition, the algebraic groups thus obtained are Poisson groups, and

the (restricted) Lie algebras are (restricted) Lie bialgebras. Therefore, to each Hopf alge-
bra, encoding a general notion of “symmetry”, we can associate in a functorial way some
symmetries — “global” ones when taking an algebraic group, “infinitesimal” when consid-
ering a Lie algebra — of geometrical type, where the geometry involved is in fact Poisson
geometry. Moreover, the groups concerned are always connected, and if Char (k) > 0
they have dimension 0 and height 1, which makes them pretty interesting from the point
of view of arithmetic geometry (hence in number theory).

The construction of the pair (G+, g−) uses pretty classical (as opposite to “quantum”)
methods: in fact, it might part of be the content of any basic textbook on Hopf algebras
(and, surprisingly enough, it is not!). Instead, to make out the pair (K+, k−) one relies on
the construction of the first pair, and make use of the theory of quantum groups.

Let’s describe our results in some detail. Let J := Ker (ϵH) be the augmentation ideal of
H (where ϵH is the counit of H), and let J :=

{
Jn

}
n∈N be the associated J–adic filtration,

Ĥ := GJ(H) the associated graded vector space and H∨ := H
/∩

n∈N Jn . One proves

that J is a Hopf algebra filtration, hence Ĥ is a graded Hopf algebra: the latter happens

to be connected, cocommutative and generated by its primitives, so Ĥ ∼= U(g−) for some
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(restricted) Lie algebra g− ; in addition, since Ĥ is graded also g− itself is graded (as a

restricted Lie algebra). The fact that Ĥ be cocommutative allows to define on it a Poisson

cobracket (from the natural Poisson cobracket ∇ := ∆−∆op on H) which makes Ĥ into a
graded co-Poisson Hopf algebra, and eventually this implies that g− is a Lie bialgebra. So

the right-hand side half of the first pair of “Poisson geometrical” Hopf algebras is just Ĥ.
On the other hand, one consider a second filtration — increasing, whereas J is decreas-

ing — namely D which is defined in a dual manner to J : for each n ∈ N , let δn the
composition of the n–fold iterated coproduct followed by the projection onto J⊗n (note

that H = k·1H ⊕ J ); then D :=
{
Dn := Ker (δn+1)

}
n∈N . Let now H̃ := GD(H) be the

associated graded vector space and H ′ :=
∪

n∈N Dn . Again, one shows that D is a Hopf

algebra filtration, hence H̃ is a graded Hopf algebra: moreover, the latter is commutative,

so H̃ = F [G+] for some algebraic group G+. One proves also that H̃ = F [G+] has no
non-trivial idempotents, thus G+ is connected; a deeper analysis shows that in the positive

characteristic case G+ has dimension 0 and height 1; in addition, since H̃ is graded, G+ as a

variety is just an affine space. The fact that H̃ be commutative allows to define on it a Pois-
son bracket (from the natural Poisson bracket onH given by the commutator) which makes

H̃ into a graded Poisson Hopf algebra: this means G+ is an algebraic Poisson group. So

the left-hand side half of the first pair of “Poisson geometrical” Hopf algebras is just H̃.

The relationship among H and the “geometrical” Hopf algebras Ĥ and H̃ can be ex-
pressed in terms of “reduction steps” and regular 1-parameter deformations, namely

H̃
0← t→ 1←−−−−−−−→
Rt

D(H)
H ′ ↪−−→ H −−� H∨

1← t→ 0←−−−−−−−→
Rt

J (H
∨)

Ĥ (⋆)

where the “one-way” arrows are Hopf algebra morphisms and the “two-ways” arrows are 1-
parameter regular deformations of Hopf algebras, realized through the Rees Hopf algebras
Rt

D(H) and Rt
J(H

∨) associated to the filtration D of H and to the filtration J of H∨.

The construction of the pair (K+, k−) uses quantum group theory, the basic ingredients
being Rt

D(H) and Rt
J(H

∨). In the present context, by quantum group we mean, loosely

speaking, a Hopf k[t]–algebra (t an indeterminate) Ht such that either (a) Ht

/
tHt

∼=

F [G] for some connected Poisson group G— then we sayHt is a QFA— or (b) Ht

/
tHt
∼=

U(g) , for some restricted Lie bialgebra g — then we say Ht is a QrUEA. Formula (⋆)

says that H ′t := Rt
D(H) is a QFA, with H ′t

/
tH ′t

∼= H̃ = F [G+] , and also that

H∨t := Rt
J(H) is a QrUEA, with H∨t

/
tH∨t

∼= Ĥ ∼= U(g−) . Now, a general result —

the “Global Quantum Duality Principle”, in short GQDP — teaches us how to construct

from the QFA H ′t a QrUEA, call it
(
H ′t

)∨
, and how to build out of the QrUEA H∨t a

QFA, say
(
H∨t

)′
; then

(
H ′t

)∨/
t
(
H ′t

)∨ ∼= U(k−) for some (restricted) Lie bialgebra k− ,

and
(
H∨t

)′/
t
(
H∨t

)′ ∼= F [K+] for some connected Poisson group K+ . This provides the

pair (K+, k−). The very construction implies that
(
H ′t

)∨
and

(
H∨t

)′
yield another frame

of regular 1-parameter deformations for H ′ and H∨, namely

U(k−)
0← t→ 1←−−−−−−−→
(H′

t)
∨

H ′ ↪−→ H −−� H∨
1← t→ 0←−−−−−−−→
(H∨

t )′
F [K+] (z)
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which is the analogue of (⋆). In addition, when Char (k) = 0 the GQDP also claims
that the two pairs (G+, g−) and (K+, k−) are related by Poisson duality: namely, k− is the
cotangent Lie bialgebra to G+ , and g− is the cotangent Lie bialgebra of K+ (in short, we
write k− = g× and K+ = G⋆

− ). Therefore the four “Poisson symmetries” G+, g−, K+

and k−, attached to H are actually encoded simply by the pair (G+,K+).
In particular, when H ′ = H = H∨ from (⋆) and (z) together we find

F [G+]
0← t→ 1←−−−−−−−−→

H′
t

H ′
1← t→ 0←−−−−−−−−→
(H′

t)
∨

U(k−)
(
= U

(
g×+

)
if Char (k) = 0

)
||
H
||

U(g−)
0← t→ 1←−−−−−−−−→

H∨
t

H∨
1← t→ 0←−−−−−−−−→
(H∨

t )′
F [K+]

(
= F

[
G⋆
−
]
if Char (k) = 0

)
which gives four different regular 1-parameter deformations from H to Hopf algebras en-
coding geometrical objects of Poisson type (i.e. Lie bialgebras or Poisson algebraic groups).

When the Hopf algebra H we start from is already of geometric type, the result involves
Poisson duality. Namely, if Char (k) = 0 and H = F [G] then g− = g∗ (where g :=
Lie (G) ), and if H = U(g) = U(g) then Lie (G+) = g∗, i.e. G+ has g as cotangent Lie
bialgebra. If instead Char (k) > 0 we have only a slight variation on this result.

The construction of Ĥ and H̃ needs only “half the notion” of a Hopf bialgebra: in fact,

we construct Â for any “augmented algebra” A (i.e., roughly, an algebra with an augmenta-

tion, or counit, that is a character), and we construct C̃ for any “coaugmented coalgebra”
C (i.e. a coalgebra with a coaugmentation, or “unit”, that is a coalgebra morphism from

k to C). In particular this applies to bialgebras, for which both B̂ and B̃ are (graded)

Hopf algebras; we can also perform a second construction as above using
(
B′t

)∨
and

(
B∨t

)′
(thanks to a stronger version of the GQDP), and get from these by specialization at t = 0

a second pair of bialgebras
((

B′t
)∨∣∣∣

t=0
,
(
B∨t

)′∣∣∣
t=0

)
: then again

(
B′t

)∨∣∣∣
t=0

∼= U(k−) for

some restricted Lie bialgebra k− , but on the other hand
(
B∨t

)′∣∣∣
t=0

is commutative and

with no non-trivial idempotents, but it’s not, in general, a Hopf algebra! Thus the spec-

trum of
(
B∨t

)′∣∣∣
t=0

is an algebraic Poisson monoid, irreducible as an algebraic variety, but

it is not necessarily a Poisson group.
It is worth stressing that everything in fact follows from the GQDP, which — in the

stronger formulation — deals with augmented algebras and coaugmented coalgebras over
1-dimensional domain. All the content of this paper can in fact be obtained as a corollary
of the GQDP as follows: pick any augmented algebra or coaugmented coalgebra over k,
and take its scalar extension from k to k[t]; the latter ring is a 1-dimensional domain,
hence we can apply the GQDP, and every result in the present paper will follow.

This note is the written version of the author’s talk at the international workshop
“Contemporary Geometry and Related Topics”, held in Belgrade in May 15-21, 2002. We
dwell somewhat in detail upon the very constructions under study, but we skip proofs and
other technicalities, which are postponed to a forthcoming article (namely [Ga3]).
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Finally, a few words about the organization of the paper. In §1 we collect a bunch of
definitions, and some standard, technical results. In §2 we introduce the “connecting func-
tors” A 7→ A∨ (on augmented algebras) and C 7→ C ′ (on coaugmented coalgebras), and

the (associated) “crystal functors” A 7→ Â and C 7→ C̃ ; we also explain the relationship
between these two pairs of functors with respect to Hopf duality. §3 cope with the effect of
connecting and crystal functors on bialgebras and Hopf algebras. §4 considers the defor-
mations provided by Rees modules, while §5 treats deformations arising from the previous
ones via quantum group theory, introducing the “Drinfeld-like functors”. In §6 we look at
function algebras and enveloping algebras, we collect all our results in the “Crystal Duality
Principle”, and explain how this result can be also proved via quantum group theory.

— — — — —
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