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ABSTRACT

We give functorial recipes to get, out of any Hopf algebra over a field, two pairs of Hopf
algebras bearing some geometrical content. If the ground field has zero characteristic,
the first pair is made of a function algebra F [G+] over a connected Poisson group and a
universal enveloping algebra U(g−) over a Lie bialgebra g− : in addition, the Poisson group
as a variety is an affine space, and the Lie bialgebra as a Lie algebra is graded; apart for
these last details, the second pair is of the same type, namely

(
F [G−], U(g+)

)
for some

Poisson group G− and some Lie bialgebra g+ . When the Hopf algebra H we start from
is already of geometric type the result involves Poisson duality: the first Lie bialgebra
associated to H = F [G] is g∗ (with g := Lie (G) ), and the first Poisson group associated
to H = U(g) is of type G∗, i.e. it has g as cotangent Lie bialgebra. If the ground field has
positive characteristic, then the same recipes give similar results, but for the fact that the
Poisson groups obtained have dimension 0 and height 1, and restricted universal enveloping
algebras are obtained. We show how all these “geometrical” Hopf algebras are linked to
the original one via 1-parameter deformations, and explain how these results follow from
quantum group theory.
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