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INTRODUCTION

In the study of classical Hamiltonian systems, one is naturally interested in those which
are completely integrable. A natural condition to achieve complete integrability for the
system is that it admit a so called ”Lax pair”, thus one typical goal is to find Hamiltonian
systems admitting such a pair; a standard recipe to obtain this has been provided by
Semenov-Tian-Shansky (see [Se]), which explain how to get such a system proceeding
from a pair (g, r) where g is a Lie quasitriangular Lie bialgebra and r is its r–matrix, a
classical solution of the classical Yang-Baxter equation (CYBE): the system is built up
on g∗, the Lie bialgebra dual to g, as phase space, and the r–matrix r provides (a recipe
for) the Poisson bracket on C∞(g∗). This raises the question of studying quasitriangular
bialgebras, as objects of special interest within the category of Lie bialgebras: in particular,
since we think at g∗ as a phase space, so that g is its cotangent space, one’s desire is to
understand the geometrical meaning of the classical r–matrix.

A second motivation for studying the geometrical meaning of the classical r–matrix
arises from conformal, quantum and topological quantum field theories. Indeed, all these
are concerned with the notion of ”fusion rules” which, roughly, rule the tensor product in a
quasitensor category (see e.g. [FK]): as an application — among others — one has a recipe
which provides tangle and link invariants as well as invariants of 3-manifolds (cf. [Tu]).
In this setting, the common notion one start with is that of a quasitensor (or ”braided
monoidal”) category; such an object can be built up as category of representations of a qua-
sitriangular Hopf algebra (QTHA): indeed, by Tannaka-Krein reconstruction theorems the
two notions — quasitensor categories and quasitriangular Hopf algebras — are essentially
equivalent, so one may switch to the study of QTHAs. A key example of QTHA is given
by a quantum group, in the shape of a quantum universal enveloping algebra (QUEA)
together with its (universal) R–matrix. Now, the semiclassical counterpart of a QUEA is
a Lie bialgebra g (i.e., the given QUEA is the quantization of U(g)): if the QUEA is also
quasitriangular, then the semiclassical counterpart of its R–matrix is a classical r–matrix
r on g, the pair (g, r) being a quasitriangular Lie bialgebra. The question then rises of
whether — or at least how far — one can perform the constructions which are usually
made via the QUEA and its R–matrix (such as that of link invariants) using instead only
the ”semiclassical” datum of (g, r): then again the key point will be to understand the
geometrical meaning of the classical r–matrix.

With this kind of motivations, we go and study the following problem. It is known that
if g is a Lie bialgebra (over a field k of zero characteristic), then its dual space g∗ is a Lie
bialgebra as well. Also, let G be an algebraic Poisson group — or Poisson-Lie group, say,
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when k ∈ {R,C} — whose tangent Lie bialgebra is g. Now assume g is quasitriangular,
with r–matrix r : this gives to g some additional properties; two questions then rise:

(∗) What an additional structure one obtains on the dual Lie bialgebra g∗ ?

(•) What is the geometrical global datum on G which is the result of ”integrating” r ?

Of course, the two questions and their answers are necessarily tightly related.

First, an answer to question (∗) was given by the authors in [GH] (cf. also [Re], [Ga1],
[Ga2]): the topological Poisson Hopf algebra F [[g∗]] (the function algebra of the formal
Poisson group associated to g∗) is braided (see the definition later on).

The result in [GH] was proved using the theory of quantum groups. Indeed, after
Etingof-Kazhdan (cf. [EK]) every Lie bialgebra admits a quantization U~(g), namely a
(topological) Hopf algebra over k[[~]] whose specialisation at ~ = 0 is isomorphic to
U(g) as a co-Poisson Hopf algebra; in addition, if g is quasitriangular and r is its r–
matrix, then such a U~(g) exists which is quasitriangular too, as a Hopf algebra, with an
R–matrix R~ (∈ U~(g) ⊗ U~(g) ) such that R~ ≡ 1 + r ~ mod ~2 (here one identi-
fies, as k[[~]]–modules, U~(g) ∼= U(g)[[~]] ). Using Drinfeld’s Quantum Duality Principle
([Dr1]; cf. [Ga5] for a proof), from any QUEA U~(g) with semiclassical limit U(g) one
can extract a certain quantum formal series Hopf algebra (QFSHA) U~(g)

′
such that the

semiclassical limit of U~(g)
′
is F [[g∗]]. In [GH], starting from a quasitriangular QUEA(

U~(g), R
)
, we showed that, although a priori R ̸∈ U~(g)

′ ⊗ U~(g)
′
(so that the pair(

U~(g)
′
, R

)
is not in general a quasitriangular Hopf algebra), nevertheless its adjoint ac-

tion R~ := Ad(R~) : U~(g)⊗U~(g) −→ U~(g)⊗U~(g) , x⊗y 7→ R~ ·(x⊗y)·R−1
~ stabilises

the subalgebra U~(g)
′ ⊗ U~(g)

′
, hence induces by specialisation an operator R0 over

F [[g∗]]⊗ F [[g∗]] : moreover, the properties which make R~ an R–matrix imply that R~ is
a braiding operator, hence the same holds for R0: thus, the pair

(
F [[g∗]],R0

)
is a braided

Hopf algebra. In particular, this gives us a new method to produce set-theoretical solutions
of the QYBE, thus giving a positive answer to a question set in [Dr2] (also tackled, for
instance, in [ESS]). Note also that for igniting our construction we only need a quantisation
functor (g, r) 7→

(
U~(g), R

)
, and several of them exist (see [En]).

Second, an answer to question (•) was given by Weinstein and Xu in [WX]. We briefly
sketch their results. Let G, resp. G∗, be a Poisson group with tangent Lie bialgebra g,
resp. g∗ : in addition, assume both G and G∗ to be complete. Let D be the corresponding
double Poisson group, which is given a structure of symplectic double groupoid, over G and
G∗ at once (further assumptions are needed, see §3 later on). Then the authors prove that
there is a classical analogous of the quantum R–matrix, namely a Lagrangian submanifold
R of D×D, called the (global) classical R–matrix, which enjoys much the same properties
of a quantum R–matrix! Furthermore, for any symplectic leaf S in G∗, this R induces a
symplectic automorphism of S × S which in turn at the level of function algebras yields a
braiding for F [S] ; then, as G∗ is the union of its symplectic leaves, we get also a braiding
on F [G∗] and so, via completion, a braiding on F [[g∗]] too.

As a first goal in this paper, we investigate more in depth the properties of the con-
struction in [GH]. In particular, we show that the step

(
U~(g), R

)
7→

(
U~(g)

′
,R~

)
is functorial and preserves quantisation equivalence. Since the initial quantisation step
(g, r) 7→

(
U~(g), R~

)
(provided by [EK], but any other would work) is functorial, and of

course the final specialisation step
(
U~(g)

′
,R~

)
7→

(
F [[g∗]],R0

)
is trivially functorial, we
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conclude that the whole construction (g, r) 7→
(
F [[g∗]],R0

)
is functorial too. Moreover,

whenever one has a braiding on F [[g∗]] a so-called infinitesimal braiding R is defined on
the cotangent Lie bialgebra of F [[g∗]]⊗2, which is just g⊕2: if the braiding is the afore
mentioned R0, we prove that the infinitesimal braiding R0 is trivial.

As a second goal of the paper, we compare our results with those of [WX]. First of all, a
general fact is worth stressing: the purpose in [WX] is to find a geometrical counterpart of
the classical r–matrix, in particular an object which is of global rather than local nature:
to this end, one is forced to impose some additional requirements from scratch, mainly the
existence of complete Poisson groups G and G∗ with tangent Lie bialgebras respectively g
and g∗ ). In contrast, the approach of [GH] sticks to the infinitesimal level: everything is
formulated in terms of Lie bialgebras or formal Poisson groups. Therefore, the final output
of [WX] is stronger but requires stronger hypotheses as well. Nevertheless, the additional
requirements in [WX] are not necessary if we stick to the infinitesimal setting: indeed,
a good deal of the analysis therein can be carried out as well in local terms — just on
germs of Poisson groups — so that eventually one ends up with results which are perfectly
comparable with those of [GH]. Thus we compare the braiding R

WX
of [WX] with the

one of [GH], call it R
GH

. Indeed, one has a theoretical reason to find strong similarities:
namely, the construction in [WX] is a geometric quantisation of (g, r), whereas the one
of [GH] passes through deformation quantisation. As a matter of fact, first we show that
the infinitesimal braiding R

WX
is trivial, just like R

GH
. Second, when g = sl2 with the

standard r–matrix we prove via explicit computation that RWX = RGH . This raises the
question of whether RWX and RGH do always coincide: we give an affirmative answer in a
separate paper (see [EGH]).

The paper is organized as follows. Section 1 is devoted to recall some notions and results
of quantum theory. Section 2 deals with the construction of braidings via quantum groups,
after [GH]: in particular we point out its ”compatibility” with the equivalence relation
for quantisations, we prove the triviality of the associated infinitesimal braiding, and we
sketch some examples. Section 3 deals with the geometrical construction of braidings after
[WX]: in particular we reformulate some results from [loc. cit.] to make them fit with our
language, and we prove that the associated infinitesimal braiding is trivial. Finally, section
4 is devoted to explicit computation of both R

WX
and R

GH
, which shows they do coincide.

— — — — —
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