
F. Gavarini, G. Halbout

“Braiding structures on formal Poisson groups and classical solutions of the QYBE”

Journal of Geometry and Physics 46 (2003), no. 3–4, 255—282.

DOI: 10.1016/S0393-0440(02)00147-X

ABSTRACT

If g is a quasitriangular Lie bialgebra, the formal Poisson group F [[g∗]] can be given
a braiding structure: this was achieved by Weinstein and Xu using purely geometrical
means, and independently by the authors by means of quantum groups. In this paper
we compare these two approaches: first, we show that the braidings they produce share
several similar properties (in particular, the construction is functorial); second, in the
simplest case (G = SL2 ) they do coincide. The question then rises of whether they are
always the same: this is positively answered in a separate paper (see [EGH]).
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