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INTRODUCTION

”Dualitas dualitatum
et omnia dualitas”

N. Barbecue, ”Scholia”

Let ĝ be an untwisted affine complex Kac-Moody algebra, with the Sklyanin-Drin-fel’d
structure of Lie bialgebra; let ĥ be its dual Lie bialgebra. Let R be the subring of complex
rational functions having no poles at roots of 1. Let Uq(ĝ) be the quantum group —
over the field C(q) — associated to ĝ : then there exists an integer form U(ĝ) of Uq(ĝ)
over R which for q → 1 specializes to U(ĝ) as a Poisson Hopf coalgebra (cf. [Lu2]).
On the other hand, another integer form U(ĝ) exists which for q → 1 specializes (as a

Poisson Hopf algebra) to F
[
Ĥ
]
, the function algebra of an infinite dimensional proalgebraic

Poisson group Ĥ whose tangent Lie bialgebra is ĥ (cf. [BK]). All this can be seen as an
application of (a “global version” of) the quantum duality principle: this claims (cf. [Dr],
§7, or [CP], §6; see also [Ga3] for a proof) that the quantization of a Lie bialgebra — via a
quantum universal enveloping algebra (QUEA) — provides also a quantization of the dual
Lie bialgebra (through its associated formal Poisson group) — via a quantum formal series
Hopf algebra (QFSHA) — and, conversely, a QFSHA which quantizes a Lie bialgebra (via
its associated formal Poisson group) yields a QUEA for the dual Lie bialgebra as well.

In addition, both U(ĝ) and U(ĝ) can be specialized at roots of 1, and special quantum
Frobenius morphisms Uε(ĝ) −� U1(ĝ) and U1(ĝ) ↪−→ Uε(ĝ) exist which are quantum
analogues (in characteristic zero!) of the Frobenius morphisms U(ĝZp) −� U(ĝZp) and

F
[
ĤZp

]
↪−→ F

[
ĤZp

]
which exist in characteristic p . Such results are not predicted by

the quantum duality principle: they are typical instead of the Jimbo-Lusztig’s approach
to quantum groups.

Our aim is to find an analogue of Uq(ĝ) for the algebra ĥ instead of ĝ . Inspired by the
quantum duality principle, and encouraged by the finite-type case (cf. [Ga1]), we choose as
a reasonable candidate the linear dual Uq(ĝ)

∗
, which has a natural structure of formal Hopf

algebra. This dual can be studied by dualizing Drinfel’d’s construction of the quantum
double and using Tanisaki’s pairings between quantum Borel (sub)algebras. So we find
a description of Uq(ĝ)

∗
, as a topological algebra with formal Hopf algebra structure, in

terms of generators and relations: we call this algebra Uq

(
ĥ
)
, for in fact we prove that it

is for ĥ what Uq(ĝ) is for ĝ . In particular, Uq

(
ĥ
)
has an integer form U

(
ĥ
)
(over R) which
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is a quantization of U
(
ĥ
)
; moreover, Uq

(
ĥ
)
has also a second integer form U

(
ĥ
)
which is

a quantization of F∞[
Ĝ
]
, where Ĝ of course is a Kac-Moody Poisson group with ĝ as

tangent Lie bialgebra. More in general, both U
(
ĥ
)
and U

(
ĥ
)
can be specialized at roots

of 1, and quantum Frobenius morphisms exist (for both kind of forms), which are dual to
those of Uq(ĝ) and have a similar description.

Finally, a brief sketch of the main ideas of the paper.

First, since Uq(ĝ) is a quotient of a quantum double Dq(ĝ) := D
(
Uq

(
b̂−

)
, Uq

(
b̂+

)
, π

)
,

its linear dual Uq(ĝ)
∗
embeds into Dq(ĝ)

∗
. Second, since Dq(ĝ) ∼= Uq

(
b̂+

)
⊗ Uq

(
b̂−

)
(as

coalgebras) we have an isomorphism (of algebras) Dq(ĝ)
∗ ∼= Uq

(
b̂+

)∗
⊗̂Uq

(
b̂−

)∗
, where

⊗̂ denotes topological tensor product. Third, since quantum Borel algebras of opposite
sign are perfectly paired, their linear duals are suitable completions of quantum Borel
algebras of opposite sign. Thus we find a presentation of Uq(ĝ)

∗
(as a topological algebra)

by generators and relations which leads us to define Uq

(
ĥ
)
:= Uq(ĝ)

∗
(actually, one has to

keep track of some choice of lattices too, involved in the toral parts).

From this, all claimed results follow. In particular, the form U
(
ĥ
)
is the subset (of

Uq

(
ĥ
)
:= Uq(ĝ)

∗
) of linear functions on Uq(ĝ) which are R–valued on U(ĝ) , so U

(
ĥ
) ∼=

HomR

(
U(ĝ), R

)
. Therefore, all results about specialisations of U

(
ĥ
)
and its quantum

Frobenius morphisms follow from those about U(ĝ) . On the other hand, the form U
(
ĥ
)

is a proper subset of HomR

(
U(ĝ), R

)
, for sort of a (non-trivial) “locality condition” is

required for elements of HomR

(
U(ĝ), R

)
to belong to U

(
ĥ
)
.

— — — — —
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