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“A PBW basis for Lusztig’s form
of untwisted affine quantum groups”

INTRODUCTION

“Questa forma è duale
di un’altra già nota

che ha un suo teorem PBW.
Ed è subito base”

N. Barbecue, “Scholia”

Let ĝ be an untwisted affine Kac-Moody algebra, and let Uq(ĝ) be the associated quan-
tum enveloping algebra. In [Be1], [Be2], quantum root vectors are defined, and a basis of
Poincaré-Birkhoff-Witt type for Uq(ĝ) is constructed, made of ordered monomials in the
quantum root vectors.

Now let Uq(ĝ) be the Lusztig’s integer form of Uq(ĝ) , generated over Z
[
q, q−1

]
by q–

divided powers E
(n)
i , F

(m)
i ; for technical reasons, we shall use a larger ground ring R . In

this paper we find a PBW basis of Uq(ĝ) as an R–module, made of ordered products of
q–divided powers of (suitable renormalizations of) quantum root vectors.

As a first step we reduce the problem to finding a basis for U+
q , the positive part of

Uq(ĝ) . Second, we exploit the duality among PBW basis in U+
q and in U−

q — proved in

[Da2] — to get from there our key result, namely finding a basis of U+
q .

Such an approach is entirely different from the classical ones, to be found in [Ga] and
[Mi]. On the other hand, the comparison with the classical setting is quite interesting:
this is sketched in the last section, where also a second PBW theorem is proved and some
further conjectures are presented.

— — — — —
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Sup. (4) 31 (1998), 493–523.

[Dr] V. G. Drinfeld, Quantum groups, Proc. ICM Berkeley 1 (1986), 789–820.

[Ga] H. Garland, The arithmetic theory of loop algebras, J. Algebra 53 (1978), 480–551.

[Ka] V. G. Kac, Infinite Dimensional Lie Algebras, Birkhäuser, Boston, 1983.
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