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“A PBW basis for Lusztig’s form
of untwisted affine quantum groups”

INTRODUCTION

“Questa forma é duale
di un’altra gia nota
che ha un suo teorem PBW.
Ed ¢e subito base”

N. Barbecue, “Scholia”

Let g be an untwisted affine Kac-Moody algebra, and let U,(g) be the associated quan-
tum enveloping algebra. In [Bel], [Be2], quantum root vectors are defined, and a basis of
Poincaré-Birkhoff-Witt type for U,(g) is constructed, made of ordered monomials in the
quantum root vectors.

Now let ,(g) be the Lusztig’s integer form of U,(g), generated over Z [q, q_l} by q—

divided powers Ei(n), Fi(m); for technical reasons, we shall use a larger ground ring R. In
this paper we find a PBW basis of {,(g) as an R-module, made of ordered products of
g—divided powers of (suitable renormalizations of) quantum root vectors.

As a first step we reduce the problem to finding a basis for Ll;“, the positive part of
$,(g) . Second, we exploit the duality among PBW basis in U;’ and in U, — proved in
[Da2] — to get from there our key result, namely finding a basis of L[} .

Such an approach is entirely different from the classical ones, to be found in [Ga] and
[Mi]. On the other hand, the comparison with the classical setting is quite interesting:
this is sketched in the last section, where also a second PBW theorem is proved and some

further conjectures are presented.
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