Fabio GAVARINI

"A PBW basis for Lusztig's form of untwisted affine quantum groups"

INTRODUCTION

"Questa forma è duale di un'altra già nota che ha un suo teorem PBW. Ed è subito base"

N. Barbecue, "Scholia"

Let $\hat{\mathfrak{g}}$ be an untwisted affine Kac-Moody algebra, and let $U_q(\hat{\mathfrak{g}})$ be the associated quantum enveloping algebra. In [Be1], [Be2], quantum root vectors are defined, and a basis of Poincaré-Birkhoff-Witt type for $U_q(\hat{\mathfrak{g}})$ is constructed, made of ordered monomials in the quantum root vectors.

Now let $\mathfrak{U}_q(\hat{\mathfrak{g}})$ be the Lusztig's integer form of $U_q(\hat{\mathfrak{g}})$, generated over $\mathbb{Z}[q, q^{-1}]$ by q-divided powers $E_i^{(n)}$, $F_i^{(m)}$; for technical reasons, we shall use a larger ground ring R. In this paper we find a PBW basis of $\mathfrak{U}_q(\hat{\mathfrak{g}})$ as an R-module, made of ordered products of q-divided powers of (suitable renormalizations of) quantum root vectors.

As a first step we reduce the problem to finding a basis for \mathfrak{U}_q^+ , the positive part of $\mathfrak{U}_q(\hat{\mathfrak{g}})$. Second, we exploit the duality among PBW basis in U_q^+ and in U_q^- — proved in [Da2] — to get from there our key result, namely finding a basis of \mathfrak{U}_q^+ .

Such an approach is entirely different from the classical ones, to be found in [Ga] and [Mi]. On the other hand, the comparison with the classical setting is quite interesting: this is sketched in the last section, where also a second PBW theorem is proved and some further conjectures are presented.

References

[[]Be1] J. Beck, Braid group action and quantum affine algebras, Commun. Math. Phys. 165 (1994), 555– 568.

[[]Be2] _____, Convex bases of PBW type for quantum affine algebras, Commun. Math. Phys. 165 (1994), 193–199.

- [B-K] J. Beck, V. G. Kac, Finite dimensional representations of quantum affine algebras at roots of 1, J. Amer. Math. Soc. 9 (1996), 391–423.
- [Bo] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4-6, Hermann, Paris, 1968.
- [Co] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Company, Dordrecht-Holland/Boston-U.S.A., 1974.
- [C-P] V. Chari, A. Pressley, Quantum affine algebras at roots of unity, Represent. Theory (electronic) 1 (1997), 280–328.
- [Da1] I. Damiani, The highest coefficient of H_{η} and the center at odd roots of 1 for untwisted affine quantum algebras, J. Algebra **186** (1996), 736–780.
- [Da2] _____, La R-matrice pour les algèbres quantiques de type affine non tordu, Ann. Sci. École Norm. Sup. (4) 31 (1998), 493–523.
- [Dr] V. G. Drinfeld, Quantum groups, Proc. ICM Berkeley 1 (1986), 789–820.
- [Ga] H. Garland, The arithmetic theory of loop algebras, J. Algebra 53 (1978), 480–551.
- [Ka] V. G. Kac, Infinite Dimensional Lie Algebras, Birkhäuser, Boston, 1983.
- [Lu1] G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), 89–113.
- [Lu2] _____, Progress in Mathematics, vol. 110, Birkhaüser, Boston, 1993.
- [Mi] D. Mitzman, Integral bases for affine Lie algebras and their universal enveloping algebras, Cont. Math. 40 (1985).
- [Ta] T. Tanisaki, Killing forms, Harish-Chandra Isomorphisms, and Universal R-Matrices for Quantum Algebras, Internat. J. Modern Phys. A 7, Suppl. 1B (1992), 941–961.