Fabio GAVARINI

"A Brauer algebra theoretic proof of Littlewood's restriction rules"

INTRODUCTION

"Non potrai dir che quest' è cosa dura: usando la dualità di Brauer dimostrazione dar, novella e pura"

N. Barbecue, "Scholia"

Let U be a complex vector space, endowed with an orthogonal or symplectic form, and let G be either O(U) or Sp(U) respectively. Consider a simple polynomial GL(U)-module V_{λ} (associated in a standard way to a partition λ), and restrict it to G. If $\lambda_1^t + \lambda_2^t \leq dim(U)$, in the orthogonal case (λ^t being the dual partition to λ), or $\lambda_1^t \leq dim(U)/2$, in the symplectic case, then its decomposition into simple G-modules is described by the Littlewood's restriction rule (cf. [L]), which gives a formula for the multiplicity in V_{λ} of each simple G-module. The main aim in this article is to prove this formula.

It is well known (cf. e.g. [W], [H]) that one can realize a copy of V_{λ} inside the tensor power $U^{\otimes f}$, where f is the sum of parts of λ (i.e. λ is a partition of f). By the general theory of centralizer algebras, a bijection $V_{\lambda} \longleftrightarrow M_{\lambda}$ exists between simple GL(U)-modules and simple modules over $End_{GL(U)}(U^{\otimes f})$ — the centralizer algebra of the GL(U)-action on $U^{\otimes f}$ — occurring in $U^{\otimes f}$, which interchanges dimensions and multiplicities. Similarly, a bijection $W_{\mu} \longleftrightarrow N_{\mu}$ exists between simple G-modules and simple modules over $End_G(U^{\otimes f})$ — the centralizer algebra of the G-action on $U^{\otimes f}$ — occurring in $U^{\otimes f}$ (which is now thought of as a G-module), which interchanges dimensions and multiplicities. Then we have an identity $[V_{\lambda}: W_{\mu}] = [N_{\mu}: M_{\lambda}]$, thus to get the multiplicity $[V_{\lambda}: W_{\mu}]$ we can compute the above right-hand-side term instead: in other words, instead of studying $V_{\lambda} \Big|_{G}^{GL(U)}$ we study $N_{\mu} \Big|_{End_G(U^{\otimes f})}^{End_G(U^{\otimes f})}$. Therefore, if

$$\left[V_{\lambda}: W_{\mu}\right] = C_{\mu}^{\lambda} \tag{(\star)}$$

is the identity given in Littlewood's restriction formula, our aim is to prove that

$$\left[N_{\mu}:M_{\lambda}\right] = C_{\mu}^{\lambda} \tag{(**)}$$

Now, one has that $End_{GL(U)}(U^{\otimes f}) = \mathbb{C}[S_f]$, with S_f acting on $U^{\otimes f}$ by index permutation. On the other hand, $End_G(U^{\otimes f})$ is a quotient of the Brauer algebra $\mathcal{B}_f^{(\epsilon N)}$, where $N = \dim_{\mathbb{C}}(U)$ and ϵ is the "sign" of the form on U ("+" for orthogonal and "-" for symplectic case); the kernel of $\pi_U : \mathcal{B}_f^{(\epsilon N)} \longrightarrow End_G(U^{\otimes f})$ is also known, essentially from the Second Fundamental Theorem of Invariant Theory (for the group G). In the stable case (i.e. when $f \leq N/2$ in the symplectic case and $f \leq N$ in the orthogonal case) π_U is an isomorphism, and Littlewood's formula can be proved as a corollary of a suitable description of $V^{\otimes f}$ (cf. [GP]). In the general case a different approach is necessary.

To describe $\mathcal{B}_{f}^{(x)}$ we can display an explicit basis D_{f} — whose elements are certain graphs — and assign the multiplication rules for elements in this basis — based on "composition" of graphs. Then from the previously mentioned description of $Ker(\pi_{U})$ we take out an explicit set of linear generators of this kernel.

In addition, the simple G-modules N_{μ} are quotients of certain $\mathcal{B}_{f}^{(\varepsilon N)}$ -modules N'_{μ} which have a nice combinatorial description (in terms of graphs related to those of D_{f}); moreover, we prove that the kernel of the epimorphism $N'_{\mu} \longrightarrow N_{\mu}$ is just $Ker(\pi_{U}).N'_{\mu}$. Now, the multiplicity $[N'_{\mu}:M_{\lambda}]$ is exactly equal to the right-hand-side part of (\star) ; then it is enough for us to show that in $Ker(\pi_{U}).N'_{\mu}$, as a $\mathbb{C}[S_{f}]$ -module, there are no components of type M_{λ} for λ such that $\lambda_{1}^{t} + \lambda_{2}^{t} \leq dim(U)$ (in the orthogonal case) or $\lambda_{1}^{t} \leq dim(U)/2$ (in the symplectic case). We deduce this fact from the previous description of $Ker(\pi_{U})$.

References

- [Br] R. Brauer, On algebras which are concerned with semisimple continous groups, Ann. of Math. **38** (1937), 854–872.
- [Bw1] Wm. P. Brown, Generalized matrix algebras, Canad. J. Math. 7 (1955), 188-190.
- [Bw2] _____, An algebra related to the orthogonal group, Michigan Math. J. 3 (1955–56), 1–22.
- [DP] C. De Concini, C. Procesi, A characteristic free approach to invariant theory, Adv. Math. 21 (1976), 330–354.
- [DS] C. De Concini, E. Strickland, Traceless tensors and the symmetric group, J. Algebra **61** (1979), 112-128.
- [GP] F. Gavarini, P. Papi, Representations of the Brauer algebra and Littlewood's restriction rules, J. Algebra 194 (1997), 275-298.
- [H] R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, Israel Mathematical Conference Proceedings 8 (1995).
- [HW] P. Hanlon, D. Wales, On the decomposition of Brauer's centralizer algebras, J. Algebra 121 (1989), 409–445.
- [Ke] S. V. Kerov, Realizations of representations of the Brauer semigroup, J. Soviet Math. 47 (1989), 2503–2507.
- [L] D. E. Littlewood, On invariant theory under restricted groups, Phil. Trans. Roy. Soc. A 239 (1944), 387–417.
- [LP] J-L. Loday, C. Procesi, Homology of symplectic and orthogonal algebras, Adv. Math. 21 (1976), 93–108.
- [We] H. Weyl, The classical groups, Princeton University Press, New York, 1946.
- [Wz] H. Wenzl, On the structure of Brauer's centralizer algebras, Ann. of Math. 188 (1988), 173–193.