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ABSTRACT

Let U be a complex vector space endowed with an orthogonal or symplectic form, and let
G be the subgroup of GL(U) of all the symmetries of this form (resp. O(U) or Sp(U)); if M
is an irreducible GL(U)–module, the Littlewood’s restriction rule describes the G–module

M
∣∣GL(U)

G
. In this paper we give a new representation-theoretic proof of this formula:

realizing M in a tensor power U⊗f and using Schur’s duality we reduce to the problem
of describing the restriction to an irreducible Sf–module of an irreducible module for the
centralizer algebra of the action of G on U⊗f ; the latter is a quotient of the Brauer algebra,
and we know the kernel of the natural epimorphism, whence we deduce the Littlewood’s
restriction rule.
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