Fabio GAVARINI, Paolo PAPI

"Representations of the Brauer algebra and Littlewood's restriction rules"

INTRODUCTION

Let V be a complex vector space of dimension 2n, endowed with a symplectic (i.e. nondegenerate bilinear skew-symmetric) form \langle , \rangle . Consider the symplectic group Sp(V) of linear automorphisms of V preserving the symplectic form \langle , \rangle . It is well known that all irreducible finite dimensional representations of Sp(V) can be realized as subrepresentations of tensor powers $V^{\otimes m}$ ($m \in \mathbb{N}$). On the other hand, consider the centralizer of the Sp(V)-action on $V^{\otimes m}$, which is a quotient of the so-called Brauer algebra \mathbb{B}_m^{-2n} : Schur duality tells us that the algebra of operators generated by Sp(V) and the above quotient of the Brauer algebra are mutual centralizer, and establishes a bijective correspondence between the representations of either of these algebras.

The Sp(V)-module $V^{\otimes m}$ splits as $V^{\otimes m} = \bigoplus_{k=0}^{\left\lfloor \frac{m}{2} \right\rfloor} T^k(V^{\otimes m})$, the subspace $T^k(V^{\otimes m})$ being the sum of the Sp(V)-isotypic components of $V^{\otimes m}$ which occur for the first time in tensor power m-2k; more directly, if $\Psi_{pq}: V^{\otimes m} \longrightarrow V^{\otimes (m+2)}$ is the extension operator which inserts in the positions p and q the canonical element of the skew-form \langle , \rangle , $T^k(V^{\otimes m})$ is the vector space generated by k-fold extensions of the traceless tensors in $V^{\otimes (m-2k)}$ (i.e. tensors killed by any contraction). Note that, if S_m denotes the symmetric group on m letters, then $T^k(V^{\otimes m})$ has a natural structure of $Sp(V) \times S_m$ -module (even more, of $Sp(V) \times \mathbb{B}_m^{-2n}$ -module).

In this paper we show (Theorem 4.1) that, for $n \geq m$ (i.e. in the so-called "stable case"), $T^k(V^{\otimes m})$ is obtained by inducing the S_m -module structure from a representation of $S_{m-2k} \times S_{2k}$ built up by taking the tensor product of traceless tensors in $V^{\otimes (m-2k)}$ and Sp(V)-invariants in $V^{\otimes (2k)}$. This is proved by considering two actions of the Brauer algebra: the natural action of \mathbb{B}_m^{-2n} on $T^k(V^{\otimes m})$ and an action on the induced representation, which we directly define in §3. Relating and comparing these actions we will be able to show that \mathbb{B}_m^{-2n} is the whole centralizer of the Sp(V)-action on the induced representation. This fact — whose proof is reduced to a combinatorial calculation — allows us to apply symplectic Schur duality and to get the desired isomorphism using elementary representation theory.

A first application is a proof of Littlewood's restriction rule in the stable case. Namely, let V_{λ} be an irreducible finite dimensional polynomial GL(V)-module indexed by a partition λ of m; its restriction to Sp(V) is no longer irreducible in general. In [L] Littlewood furnished a formula describing the decomposition of V_{λ} into irreducible Sp(V)-modules under the assumption that λ has at most n parts; note that this condition is always satisfied in the stable case. Using the description of $T^k(V^{\otimes m})$ we gave, it is not difficult to recover Littlewood's rule using standard techniques of classical invariant theory (cf. §5).

The previous arguments can be repeated almost word-by-word for the orthogonal group; in §6 we point out the few modifications needed.

Finally, in §7, we recover from our main result an explicit realization, inside $V^{\otimes m}$, of the irreducible representations of the Brauer algebra in the stable case, and describe the relation among our results and the combinatorial description of these representations (due to Kerov [K]).

In §2 we introduce the basic definitions and recollect well-known results of representation theory which will be needed in the sequel; almost all the results of this section can be found in Weyl's fundamental book [W].

References

- [Br] R. Brauer, On algebras which are concerned with semisimple continous groups, Annals of Mathematics **38** (1937), 854–872.
- [D-P] C. De Concini, C. Procesi, A characteristic free approach to invariant theory, Advances in Mathematics 21 (1976), 330–354.
- [D-S] C. De Concini, E. Strickland, Traceless tensors and the symmetric group, Journal of Algebra 61 (1979), 112–128.
- [K] S. V. Kerov, Realizations of representations of the Brauer semigroup, Journal of Soviet Mathematics 47 (1989), 2503–2507.
- [L] D. E. Littlewood, On invariant theory under restricted groups, Phil. Trans. Roy. Soc. A 239 (1944), 387–417.
- [L-P] J-L. Loday, C. Procesi, Homology of symplectic and orthogonal algebras, Advances in Mathematics 21 (1976), 93–108.
- [W] H. Weyl, The classical groups, Princeton University Press, New York, 1946.
- [Wz] H. Wenzl, On the structure of Brauer's centralizer algebras, Annals of Mathematics 188 (1988), 173–193.