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INTRODUCTION

Let V be a complex vector space of dimension 2n, endowed with a symplectic (i.e. non-
degenerate bilinear skew-symmetric) form ⟨ , ⟩ . Consider the symplectic group Sp(V ) of
linear automorphisms of V preserving the symplectic form ⟨ , ⟩ . It is well known that all
irreducible finite dimensional representations of Sp(V ) can be realized as subrepresenta-
tions of tensor powers V ⊗m (m ∈ N). On the other hand, consider the centralizer of the
Sp(V )–action on V ⊗m, which is a quotient of the so-called Brauer algebra B−2n

m : Schur
duality tells us that the algebra of operators generated by Sp(V ) and the above quotient
of the Brauer algebra are mutual centralizer, and establishes a bijective correspondence
between the representations of either of these algebras.

The Sp(V )–module V ⊗m splits as V ⊗m =
⊕[m2 ]

k=0 T
k (V ⊗m) , the subspace T k (V ⊗m)

being the sum of the Sp(V )–isotypic components of V ⊗m which occur for the first time in
tensor power m− 2k ; more directly, if Ψpq : V ⊗m −→ V ⊗(m+2) is the extension operator
which inserts in the positions p and q the canonical element of the skew-form ⟨ , ⟩ ,
T k (V ⊗m) is the vector space generated by k–fold extensions of the traceless tensors in
V ⊗(m−2k) (i.e. tensors killed by any contraction). Note that, if Sm denotes the symmetric
group on m letters, then T k (V ⊗m) has a natural structure of Sp(V )× Sm–module (even
more, of Sp(V )× B−2n

m –module).

In this paper we show (Theorem 4.1) that, for n ≥ m (i.e. in the so-called “stable
case”), T k (V ⊗m) is obtained by inducing the Sm–module structure from a representation
of Sm−2k × S2k built up by taking the tensor product of traceless tensors in V ⊗(m−2k)

and Sp(V )–invariants in V ⊗(2k). This is proved by considering two actions of the Brauer
algebra: the natural action of B−2n

m on T k (V ⊗m) and an action on the induced represen-
tation, which we directly define in §3. Relating and comparing these actions we will be
able to show that B−2n

m is the whole centralizer of the Sp(V )–action on the induced rep-
resentation. This fact — whose proof is reduced to a combinatorial calculation — allows
us to apply symplectic Schur duality and to get the desired isomorphism using elementary
representation theory.

A first application is a proof of Littlewood’s restriction rule in the stable case. Namely,
let Vλ be an irreducible finite dimensional polynomial GL(V )–module indexed by a parti-
tion λ of m ; its restriction to Sp(V ) is no longer irreducible in general. In [L] Littlewood
furnished a formula describing the decomposition of Vλ into irreducible Sp(V )–modules
under the assumption that λ has at most n parts; note that this condition is always sat-
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isfied in the stable case. Using the description of T k (V ⊗m) we gave, it is not difficult to
recover Littlewood’s rule using standard techniques of classical invariant theory (cf. §5).

The previous arguments can be repeated almost word-by-word for the orthogonal group;
in §6 we point out the few modifications needed.

Finally, in §7, we recover from our main result an explicit realization, inside V ⊗m, of
the irreducible representations of the Brauer algebra in the stable case, and describe the
relation among our results and the combinatorial description of these representations (due
to Kerov [K]).

In §2 we introduce the basic definitions and recollect well-known results of representation
theory which will be needed in the sequel; almost all the results of this section can be found
in Weyl’s fundamental book [W].
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