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Research main guidelines

My scientific activity till now has been centered around representation theory, Lie
theories and their quantization: Lie algebras, Lie groups, algebraic groups and their rep-
resentations, invariant theory, homogeneous spaces, quantum theories, etc. Within this
very broad framework, my research work has focused upon three specific topics: algebraic
groups and their representations, quantum groups, Hopf algebras and their generalizations.
Hereafter I sketch a rough outline of my results about all this (Remark: the numbers in
square brackets below refer to the subsequent list of publications).

Algebraic Groups, Representations and related topics: In the broad field of
algebraic group theory and its representation-theoretical side, I mainly focused upon two
main trends: classical invariant theory, and (algebraic) supergroup theory.

Classical Invariant Theory : In invariant theory for classical groups a central role is
played by the so-called Schur-Brauer-Weyl duality. This strictly relates the irreducible
representations of such a group to the irreducible representations of the algebra A(m) which
centralizes the action of the group itself on V ⊗m, where V is the natural representation
(over C) of the group. For GL(V ) or SL(V ) the algebra A(m) is a quotient of the group
algebra of the symmetric group on m elements; when realizing the latter as set of graphs,
and its product as a “graphical composition”, one obtains a combinatorial description of
A(m). For the orthogonal or symplectic groups instead, A(m) is a quotient of the so-called
Brauer algebra, which has as basis a semigroup of graphs which extends the symmetric
group, and still admits a suitable combinatorial description. For the last one hundred years
this theory has been, and still is nowadays, of central importance for the representation
theory of classical groups; it cyclically comes back under specialists’ investigations, both
because of its intrinsic interest and because several longstanding classical problems still
remain unsolved.

In this context, the paper [2] makes use of the above mentioned duality to study the
submodule T k

(
V ⊗m

)
of all tensors of valence k in V ⊗m; understanding the structure of

this space was exactly one of the unsolved problems mentioned right now. The result in [2]
is a description of T k

(
V ⊗m

)
as a representation, for the Brauer algebra, induced from a

simpler one. As a byproduct this description — essentially combinatorial — provides a new
proof of Littlewood’s restriction formula (for m big enough) which describes the restriction
to SP (V ), or to O(V ), of an irreducible GL(V )–representation. The analysis and results
of this work are improved in [5], where a more subtle combinatorial description of the
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Brauer algebra and of its indecomposable modules yields a new proof of a stronger version
of Littlewood’s restriction formula: in particular, the original result for the orthogonal
group is improved in this work, for the first time since Littlewood’s article of 1944. With
the like techniques, in [26] a great part of the radical of the Brauer algebra is described,
and similarly for its indecomposable modules.

Supergroups : In classical geometry, the symmetry groups of interest are the Lie groups
(in the differential setup) or the algebraic groups (in the algebraic framework). In super-
geometry, these are replaced by Lie supergroups or algebraic supergroups: objects of both
types can be defined with the language of topology (which better stress the underlying
aspects of classical geometry), or in terms of functors of points (which better serves a
wider generalizations). These supergroups are in close relation with Lie superalgebras via
the super-analogue of Lie’s theorems relating Lie groups and Lie algebras in the classical
setting. Nevertheless, the study of Lie superalgebras is somehow easier - and it has been
pushed forward much more - than that of supergroups. In particular, the classification
(and structure theory) of supergroups is much less advanced than the Lie superalgebras
one: indeed, even the construction of examples is somewhat more problematic.

In this context, with the papers [29], [30], [31], [32], [33] and [31-Cor] one moves a
step forward in the direction of a (sort of) classification program for “simple” algebraic
supergroups (roughly speaking, say). Indeed, these works provide an existence theorem for
all connected algebraic supergroups whose tangent Lie superalgebra is simple. We recall
that such Lie superalgebras (simple, finite-dimensional), whose classification is well-known,
split into two classes: those of classical type — which are the superanalogue (in a sense), of
simple finite-dimensional complex Lie algebras, or of affine complex Kac-Moody algebras
— and those of Cartan type.

In detail, in the works [29] and [33] one obtains such an existence result for the
classical case, by means of a direct, concrete construction, which mimics the classical
one by Chevalley that provides all connected simple algebraic groups whose tangent Lie
algebra is semisimple. Indeed, one starts with a classical Lie superalgebra and a simple
representation of it: the desired algebraic supergroups are then given as subgroups (in
the general linear supergroup over the representation space) generated by “one-parameter
supersubgroups” attached to root vectors in the Lie superalgebra itself. In particular, this
construction provides a unifying approach to most of the algebraic supergroups already
known in literature; in addition, it yields an explicit recipe to produce new examples.
Moreover, these supergroups are built in as “super group-schemes” over Z . On the other
hand in [30] — proceedings of a conference — one gives a short, thought-out presentation
of this very construction, and in addition one shows also how one can extend the just
described method to other contexts.

Some particular “Chevalley supergroups” (namely those of type D(2, 1; a) , now con-
sidered as complex Lie supergroups) are investigated again in [38]. Roughly speaking, the
Lie superalgebras of type D(2, 1; a) form a one-parameter family whose elements are (Lie
superalgebras that are) simple for all but a finite number of values of the parameter: in
this work we show that the construction of the associated Lie supergroups also makes sense
for those “singular” values of the parameter, leading to non-simple supergroups that we
describe in some detail. One can realize this in different ways (that yield different results
in the singular case), five of these are presented in detail; while doing this, we also compare
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the approach by Scheunert with that by Kac (more largely followed in literature).
As a next step, in [32] one proves sort of a converse result of those in [29]: namely,

one shows that every connected algebraic supergroup whose tangent Lie superalgebra is
classical is necessarily isomorphic to a Chevalley supergroup of the type considered in [29].

With largely similar techniques and strategy, in [31] one proves a similar existence
and uniqueness — up to isomorphisms — theorem for (connected) algebraic supergroups
whose tangent Lie superalgebra is of Cartan type; in particular, the case of type W (n) is
treated a bit more in detail. The same topic is treated again in [31-Cor], where a mistake
in [31] is amended and a key step of the main construction is clarified more in depth.

In [36] I dwell on the more general problem of studying an (affine) algebraic super-
group via its associated super Harish-Chandra pair — namely, the datum of its underlying
classical algebraic group and its tangent Lie superalgebra. This is a key theme in super-
group theory, which is addressed by several authors in different ways; I myself present
yet another approach, tightly related with the existence of “global splittings” for (affine)
supergroups. Roughly, for a supervariety this is the property to split into direct product
of a classical (algebraic) variety and a totally odd supervariety — in short, a global fac-
torization of type “even×odd ”: although this does not necessarily hold for supervarieties
in general (it always works locally, but globally may fail), it is true instead — under mild
conditions — for affine supergroups. The parallel question is dealt with in [39] and [E3]
for Lie supergroups (of either real smooth, real analytic or complex holomorphic type)
instead of algebraic supergroups: namely, the equivalence of Lie supergroups and super
Harish-Chandra pairs is proved giving two new functorial recipes to construct, out of a
given super Harish-Chandra pair, a suitably devised Lie supergroup. One of these recipes
is (essentially) the same as in [36], but adapted to the differential setup (with quite a
few critical technicalities to take care of); the other one instead is new — and might,
conversely, be adapted to the algebro-geometrical framework as well.

In [43] we undertake the study of real forms — and in particular compact ones (in a
suitable sense) — of complex Lie superalgebras and supergroups, showing that the situation
is actually richer than in the classical case: indeed, besides the obvious generalization of the
notion of real form (from the classical case to the super case) — called “standard” — there
exists also a second one — called “graded” — which has no direct classical counterpart.
In this sense, moving to the super context reveals in fact an unexpectedly richer situation.
The study of symmetric pairs (and the associated symmetric superspaces) performed in
[45] is also somehow related with all this.

On a different note, [46] is instead a somewhat ”eccentric”, standalone work, which
deals with geometric quantization, in a super-Kähler setup, for the abelian Lie supergroups.

Finally, in [49] we work with yet another different topic: namely, we introduce a special
class of Lie superalgebras (possibly with trivial super structure, hence just simply Lie
bialgebras), which are called “GaGa algebras”, characterized by having a (even) bi-Abelian
subsuperbialgebra which acts and coacts diagonally, so that the superbialgebra itself splits
into a direct some of remarkable subspaces (namely “weight & coweight spaces”). For
these peculiar Lie superbialgebras one can find a very precise combinatorial description
(“à la Kac–Moody”, say), and their theory of deformations — by twist or by 2–cocycle
— is highly interesting: both these lines of research are introduced and developed in this
work. In addition, we show how several well-known classes of Lie superbialgebras fall
within this framework, hence they can be treated as particular examples (non trivial!) of
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GaGa algebras which “exist in nature”, and so motivate the introduction of a new, general
notion encompassing and expanding all these specific examples.

Quantum Groups: Quantum Groups are algebraic deformations, in the category
of Hopf algebras, either of universal enveloping algebras of Lie algebras — hence they are
called quantized universal enveloping algebras (QUEA in the sequel) — or of function
algebras of algebraic groups or Lie groups — then they are called quantized function alge-
bras (QFA in the sequel). Introduced in 1985 as “quantum symmetries”, they later prove
themselves very interesting also in the study of algebraic groups in positive characteristic
and their representations, or for the theory of knot (and link) invariants and many other
topics. Moreover, they are intrinsically related to the geometric theory that one gets from
them as semiclassical limits or, conversely, which they quantize: namely, the theory of
Poisson (Lie or algebraic) groups and of Lie bialgebras, and more in general the geometry
of Poisson varieties.

My contributions in this field divide into four main trends.

QFA=QUEA : The “equivalence” between QUEAs and QFAs is a first trend.

In [0] and [3], starting from the most famous quantum groups, built upon semisimple
Lie algebras, with standard Poisson structure on the associated groups, I introduce quan-
tum groups for the dual Poisson groups: the data I start from now are the QUEAs by
Jimbo (and Drinfeld) and their integral forms, both restricted and unrestricted. Taking
the first or the second ones the corresponding semiclassic limits respectively are universal
enveloping algebras of Lie bialgebras or function algebras of Poisson groups: this is the
basic idea, which applies as well to the case of Hopf algebras dual to the QUEAs I was
starting from, thus yielding quantum groups “duals” to the above ones. The analogue of
this work for affine Kac-Moody algebras is done in [7]: here the key tool is a theorem
of Poincaré-Birkhoff-Witt (PBW) type for restricted integral forms of the affine QUEAs;
such a result is stated and proved in [6].

In [4] I perform, dually, a similar construction to that of [0] and [3], yet more concrete;
but now I start from the QFAs associated to SL(n) or GL(n), for which it is available a
well-known presentation by generators and relations by means of “q–matrices”; another
result in this paper is a PBW theorem for the QFA over SL(n). All these results then get
improved in [23] and [24].

For the SL(n) case, looking at the corresponding QUEA as a QFA leads to find an
alternative presentation: this is the content of [19], where such a presentation is given in
terms of “q–matrices”. In particular, this yields an alternative approach to the well-known
presentation by L–operators due to Faddeev, Reshetikhin and Takhtajan.

A further expansion of some aspects of [4] is the article [25]: in it some theorems of
Poincaré-Birkhoff-Witt type are proved for the QFA associated to Mat (n), to GL(n) or
to SL(n) , and for their specializations at roots of 1. As a corollary, one obtains also some
interesting results about the structure of Frobenius algebra for these QFA at roots of 1.

Finally, another development of all these constructions is performed in [41], where
“multiparametric” QUEAs are taken into account, along with their integral forms and
their specializations at roots of 1, with results analogous to those already known for the
uniparametric case.
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QDP : The quantum duality principle, or QDP in the sequel, is the guiding idea of
the second trend, and explains the results of the first one. In the original formulation
by Drinfeld, the QDP provides an category equivalence between QUEAs and QFAs, for
quantum groups defined (as Hopf algebras) over k[[h̄]], where k is a field, and topologically
complete: in [12] I give a complete and rigorous proof — the first one in literature —
of this result. In [E1] and [20] instead I push forward this idea, formulating a much
stronger version of the QDP for Hopf algebras defined over very general rings and without
additional topological assumptions. Namely, I prove that Drinfeld’s recipes do define two
endofunctors of the category of such Hopf algebras, which realize a Galois correspondence
in which these functors have as images the subcategory of the QUEAs and of the QFAs
respectively; moreover, QUEAs and QFAs are exactly the subcategories of those objects
which are fixed by the composition of the two functors. Of course, as the contexts are
different the techniques which are involved in [12] and in [E1], [20] are rather different.

While [E1] is a widely expanded essay, enriched with several examples and applica-
tions, [20] is the journal article which treats just the main, central result of [E1], namely
the theorem expressing the stronger version of the QDP explained above. Both [9] and [11]
(proceedings of conferences) are short versions of [E1], each one enriched with an original
example. On the other hand, [E2] instead (notes for a summer school) is a survey of the
results in [E1], explained by means of several explicit examples and applications. The gen-
eral discussion is completed with [47], in which we analyze the interplay between the QDP
and the (Hopf theoretical) deformation procedures of QUEAs by twist and by 2-cocycle.

A remarkable case of QDP in an infinite-dimensional setup is studied in [42], where one
considers a “continuous” analogue of the (polynomiale and/or formal) QUEA associated
with a Kac-Moody algebra. In this context one cannot apply directly the general theory,
but a direct analysis leads to a final result which much like the same as the one in the
finite-dimensional case.

More in general, a direct application of the QDP to Hopf algebras defined over a
field leads to the crystal duality principle, or CDP in short. This can also be obtained
by classical means — i.e., without involving quantum groups — so it reads like a chapter
of classical Hopf algebra theory. The works dealing with these are [15], [16] and [17]: for
more details, see section CDP in “Hopf Algebras and related structures” below.

A further development is [18], where we state and prove a QDP for homogeneous
spaces, or for the corresponding subgroups. As an application we compute an explicit
quantization of an important Poisson structure on the space of Stokes matrices; a shorter,
seminal version of this work is [21], where some other applications and examples are pre-
sented. Moreover, a version of this work in terms of global quantum groups is developed
in [35], where in addition we consider different versions of “quantization” for subgroups;
in this way also non-coisotropic subgroups can be taken into account, but our results
show that in the end the coisotropic ones necessarily play a key role. Finally, these ideas
are extended to the context of projective homogeneous spaces, studying the example of
Grassmann varieties in [28] and the general case in [27].

In yet another direction, studying deformations (by twist or by 2–cocycle, in the
sense of Hopf algebra theory) of quantum groups, in [47] we prove that the QDP is the
underlying reason for which it is possible to introduce a construction of “deformations by
polar twist , respectively by polar 2–cocycle”, for QUEAs, respectively for QFSHAs. This
allows to extend in a non trivial way the usual, standard constructions of Hopf theory,
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thus introducing new tools for the deformation theory of quantum groups.

Finally, in [34] we explore the possibility to extend all this lot of ideas to the framework
of “quantum groupoids”, i.e. quantizations of bialgebroids: here the notion of bialgebroid
is a suitable generalization of that of bialgebra, we deal with quantization in a formal sense
and, at the semiclassical level, Lie (bi)algebras are replaced by Lie-Rinehart (bi)algebras -
sometimes called just “Lie (bi)algebroids”. In particular, we develop a convenient form of
QDP for these objects (also showing this “at work” in a specific example).

R-MAT : R–matrices and braidings are the core of the third trend. The notion of
R–matrix for a QUEA is the quantization of the notion of classical r–matrix for a Lie
bialgebra, which corresponds to consider those Lie bialgebras whose Lie cobracket be a
particular coboundary. More in general, the Hopf algebras endowed with an R–matrix
correspond, via Tannaka-Krein duality and associated reconstruction theorems, to the
braided monoidal categories, i.e. those endowed with an analogue of the tensor product
and of the twist (“exchange of factors”) automorphism for it. It springs out of this the
interest of this algebras in quantum and conformal field theories, as well as in topology for
the construction of link invariants and of 3-variety invariants. One gets a weaker notion
by substituting the R–matrix with a suitable automorphism of the Hopf algebra, which is
called braiding.

In my work upon this topic I applied the QDP (see above) to those QUEA endowed
with an R–matrix (the so-called “quasitriangular” ones): the main result is that, given a
Lie bialgebra endowed with a classical r–matrix (also called “quasitriangular”), one finds a
geometrical counterpart of such an r–matrix for dual formal Poisson group, thus explaining
the relationship between r–matrices and Poisson duality (among Poisson groups).

In [1], given a QUEA over a semisimple Lie algebra, and its standard R–matrix, sorting
out of the QUEA a QFA (after the QDP, like in [E1] or in [E2] or in [22]) I prove that the
adjoint action of the R–matrix does specialize to a distinguished automorphism on this
QFA. Moreover, the semiclassical limit of the latter is a birational automorphism of the dual
Poisson group, and more precisely a braiding, in geometrical sense; thus I widely generalize
a result proved by Reshetikhin for SL(2). All this I later extend to the case of Kac-Moody
algebras in [8]. In [10] we perform a further generalization, proving that a similar result
does hold for any quasitriangular QUEA: here we apply the QDP as formulated in [12],
i.e. for topological quantum groups directly using the general definition of the functor
QUEA −→ QFA rather than an explicit description as one does in [1] and [8].

In [13] we compare the results of [1] with those of Weinstein and Xu, who make an
analogous braiding on the dual of a quasitriangular Poisson group by means of purely
geometrical methods. Our first result is that both braidings are “infinitesimally trivial”.
The second is that in the case of SL(2) these braidings do coincide: the proof comes out
of an explicit description of both of them, via direct computation.

Finally in [14] we show that, given a formal quasitriangular Poisson group G, with
classical r–matrix r, a braiding associated to it on the dual formal Poisson group G∗

is unique: in particular the one in [13] and that in Weinstein and Xu always coincide.
Furthermore we make precise the nature of such a braiding, proving that it is Hamiltonian,
corresponding to some function ρ on G∗, which in turn is a “lifting” of r from the cotangent
Lie bialgebra of G∗ to the function algebra of G∗ itself. We provide two independent
construction of such a lifting ρ : in the first one, ρ is given as semiclassical limit of the
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“logarithm” of a quantum R–matrix which quantizes r ; in the second one, we make out
ρ directly as a lifting of r by iterated approximations, where the possibility of performing
the n–th step is proved by cohomological means.

To finish with, in [47] we consider further constructions concerning R–matrices —
along with their dual counterparts, namely ϱ–comatrices — which are standard in Hopf
algebra theory. In fact, we prove that in the case of quantum groups (either QUEA or QFA,
in the formal framework) they actually provide very precise results which involve once more
the Quantum Duality Principle applied to the involved quantum group. Moreover, we also
show how these constructions extend to a broader setup involving the more general notions
of “polar–R–matrix” and “polar–ϱ–comatrix”.

Multiparameter quantum grous and deformations : The multiparameter quantum gro-
ups are quantum groups — i.e. QUEAs or QFSHAs/QFAs — which depend on more than
one parameter: among these parameters, however, only one has “quantum value”, while
the other ones have “geometrical value”. In literature, people studied both those where the
“geometrical parameters” affect the coalgebra structure and those which affect the algebra
structure.

The first case I studied is that of multiparameter quantum groups which are dual to
the semisimple ones where the structure of coalgebra was modified (by means of “geomet-
rical” parameters): the results are presented in [0] and in [3], whiche show that in these
dual quantum groups the geometrical parameters affect instead (dually!) the structure of
algebra. In [41] instead we study multiparameter QUEAs (of polinomial type) for Kac–
Moody algebras of symmetrizable type, in which the geometrical parameters affect the
structure of algebra. This study is resumed and deepened in [40] and in [44], in terms of
QUEAs of formal type, and then it is extended in [48] to the case of quantum supergroups.
In all these cases — including [0] and [3] as well — we study also the semiclassical limits
of these structures, which are “multiparameter” Lie (super)bialgebras that are described
in detail. Finally in [51] we extend this study to the case of QFAs for multiparameter
quantum groups.

On the other hand, quantum groups are special type Hopf algebras, and as such they
can be “deformed” so to obtain new Hopf algebras — and possibly, new quantum groups;
such deformations are essentially of two types, by twist or by 2–cocycle, the first one change
the structure of coalgebra, the second one that of algebra. In particular, by means of these
constructions one can obtain multiparameter quantum groups, starting with uniparameter
quantum groups and deforming them in a suitable way (via a particular twist or 2–cocycle).
For instance, the results in [41] to a large extent are based upon this kind of construction.
More in general, the link between multiparameter quantum groups and deformations is
studied at length in [40], [44], [48] and [51]: in detail,

(a) in [40] and in [44] we study QUEAs for multiparameter quantum groups, and
their deformations, proving in particular that deformations by twist or by 2–cocycle are
(“morally”) of the same nature, in particular they leave stable this class of multiparameter
QUEAs;

(b) in [48] we extend the study made in [44] to the case of (formal) QUEAs for
quantum multiparameter supergroups, with totally similar results;

(c) in [51] we develop the analogous study to [40] and [44], but dedicated to the case
of QFAs for multiparameter quantum groups.
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Finally, the work [47] analyzes methodically the subject of the construction of de-
formations (by twist or by 2–cocycle) of quantum groups, and of their effect onto the
semiclassical limit: the main result — inspired by the QDP — is that one can extend
these procedures up to construct “deformations by polar–twist” for (formal) QUEAs and
“deformations by polar–2–cocycle” for QFSHAs. This extends in a non-trivial way the
standard constructions of Hopf theory, thus introducing new tools for deformation theory
of quantum groups, as well as for their semiclassical limits.

Hopf Algebras and related structures: The theory of Hopf algebras is a clas-
sical topic which gained new interest in the last twenty years, mainly for its interplay
with such diverse fields as quantum groups, low-dimensional topology, tensor categories,
supergeometry, etc.

My contributions in this field divide into three main trends.

CDP : The crystal duality principle, or CDP in short, is an important corollary of the
QDP, which is obtained as an application of the latter to Hopf algebras defined over a field
and for which scalars are extended to polynomials over that field. Nevertheless, such a
result can be achieved almost entirely by means of techniques and tools of the “classical”,
i.e. “non quantum”, theory of Hopf algebras over a field: in this way one gives life to a new
chapter of the “standard” theory, in which to any Hopf algebra (which can be thought of
as a generalized symmetry) one associates Poisson groups and Lie bialgebras (which are
geometrical symmetries). This approach of “classical” type is realized in [17]. A short
version of such a work is [15] (proceedings of a conference). Instead, [16] is the explicit
study in detail of an important example, a Hopf algebra built out of the Nottingham group
of formal series of degree 1, with the composition product. This is just but one among
several examples of Hopf algebras built upon combinatorial data (graphs, trees, Feynman
diagrams, etc.) which naturally show up in (co)homology, non-commutative geometry and
quantum physics; so it is highly instructive as a “toy model” of more general situations.

Quasitriangular structures (and generalizations) : A very special class of Hopf algebras
is that for which — roughly speaking — the lack of cocommutativity is somehow “under
control”. This idea is encoded in the notion of quasitriangular Hopf algebras and in its
various generalizations. I studied this topic in a series of papers — [1], [8], [10], [13], [14]
and [47] — in which the Hopf algebras under exam are always quantum groups: for further
details, see section R-MAT in “Quantum Groups” above.

Generalizations (quasi-Hopf algebras, Hopf superalgebras, etc.) : Hopf algebras have
been generalized in several ways: among these, I consider the cases of quasi-Hopf alge-
bras and of Hopf superalgebras. In the first case, one is weakening the coassociativity
axiom; in the second, one is considering Hopf algebras in the category of super (i.e., Z2–
graded) vector spaces — or supermodules over a ring — so that tensor products must be
handled in a different way.

The study of quasi-Hopf algebras became very important due to Drinfeld’s works in
the second half of the ’80s of last century. The main ingredient in this study is the notion
of “associator”, an object which then turns useful in other contexts as well (for instance,
to solve the general problem of the quantization of Lie bialgebras). As a matter of fact,
to date the sole associator which is really known is the so-called KZ associator, obtained
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as solution of the Knizhnik-Zamolodchikov differential equation (with respect to the same
name connection on Cn), for which it was known — explicitly — an additive formula only.
In [20] we provide instead an explicit formula for the logarithm of this associator (as a
special application of a more general result), in terms of multiple ζ–functions.

As to Hopf superalgebras, the commutative ones (in a “super sense”) have a geomet-
rical meaning: namely, their spectra are the so-called affine algebraic supergroups, just as
classically the affine algebraic groups are the spectra of commutative Hopf algebras. My
main contributions to this topic are in [29], [30], [31], [32], [33], [36], [31-Cor], [38], [39],
[E3] e [43], whose content is explained in detail above — see the section Supergroups in
“Algebraic Groups, Representations and related topics”.

Finally, an important extension of the notion of Hopf algebra (actually, of bialgebra
indeed) is that of bialgebroid: this has shown increasing importance in several contexts,
e.g. in non-commutative geometry. I start investigating this in [34], which is devoted to
study quantizations (in formal sense) of bialgebroids. In particular, here we study the
functors providing linear duality among (quantum) bialgebroids — something more or less
already known — and we introduce new, suitable functors “à la Drinfeld” which establish
a QDP for quantum bialgebroids — the (main) original contribution of this paper (see also
the section QDP in “Quantum Groups” here above). These topics are further developed
in [50], where the focus is set upon the subclass of “action bialgebroids”, and among these
in particular onto “action quantum groupoids”.

Still in this context one has also [37], that is specifically devoted to the study of duality
for bialgebroids with suitable additional structure.
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[23] — F. Gavarini, Z. Rakić, “Fq[M2], Fq[GL2] and Fq[SL2] as quantized hyperalge-
bras”, Communications in Algebra 37 (2009), no. 1, 95–119 —
DOI: 10.1080/00927870802241238 ;

[22] — F. Gavarini, “The global quantum duality principle”, Journal für die reine und
angewandte Mathematik 612 (2007), 17-33 — DOI: 10.1515/CRELLE.2007.082 ;

[21] — N. Ciccoli, F. Gavarini, “Quantum duality principle for coisotropic subgroups
and Poisson quotients”, in: N. Bokan, M. Djoric, A. T. Fomenko, Z. Rakić, B. Weg-
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