Algebra I. Esercizi 12. Quaternioni, risultanti, discriminanti. Roma, 2 gennaio 2017.

- 1. Scrivere ogni intero n=22,23,...,33 come somma di quattro quadrati di numeri interi. Se possibile scrivere n come somma di tre quadrati. Se possibile scrivere ncome somma di due quadrati.
- 2. Sia m un intero congruo a 7 (mod 8). Dimostrare che m non è somma di tre quadrati di numeri interi. Dimostrare che per ogni quadrato $Q \in \mathbf{Z}$, il numero Qm non è somma di tre quadrati di numeri interi (infatti, ogni numero intero m > 0 che non è di questo tipo è somma di tre quadrati (Legendre 1797)).
- 3. Trovare un quaternione intero y più vicino possibile al quaternione $x = \frac{1+3i-j+5k}{2}$. Calcolare la norma N(x-y)
- 4. Sia p > 2 un primo. Sia R l'anello $\mathbf{Z}_p[X]/(X^2 + 1)$.
 - (a) Determinare $\#R^*$ (la risposta dipende dalla classe di $p \pmod{4}$).
 - (b) Dimostrare che l'applicazione $\phi: R^* \to \mathbf{Z}_p^*$ data da $a+bX \mapsto a^2+b^2$ è un omomorfsimo di gruppi.
 - (c) Dimostrare che ϕ è suriettivo.
 - (d) Dato $t \in \mathbf{Z}_p^*$, quante copie $(a,b) \in \mathbf{Z}_p \times \mathbf{Z}_p$ con $a^2 + b^2 = t$ ci sono? (Sugg: La risposta dipende solo da p e non da t).
- 5. Scrivere $X^2Y^2 + Y^2Z^2 + Z^2X^2$ come polinomio nei polinomi simmetrici elementari $s_1, s_2, s_3 \in \mathbf{Z}[X, Y, Z]$. Stessa domanda per $XY^3 + YX^3 + XZ^3 + ZX^3 + ZY^3 + YZ^3$.
- 6. Siano α, β, γ gli zeri complessi del polinomio $X^3 + X^2 + 1$. Determinare l'intero

$$\det \begin{pmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{pmatrix}.$$

- 7. Siano $\alpha_1, \alpha_2, \ldots, \alpha_7 \in \mathbb{C}$ tali che $X^7 + X + 2 = (X \alpha_1)(X \alpha_2) \cdots (X \alpha_7)$.

 - (a) Determinare $\alpha_1 + \alpha_2 + \cdots + \alpha_7$; (b) Dimostrare che $\alpha_1^3 + \alpha_2^3 + \cdots + \alpha_7^3 = 0$;
 - (c) Determinare $\alpha_1^7 + \alpha_2^7 + \cdots + \alpha_7^7$.
- 8. (Fibonacci) Siano α e β gli zeri del polinomio $X^2-X-1.$
 - (a) Calcolare $F_k = (\alpha^k \beta^k)/(\alpha \beta)$ per $0 \le k \le 4$.
 - (b) Dimostrare che F_k sta in **Z** per ogni $k \geq 0$.
 - (c) Dimostare che $F_{k+1} = F_k + F_{k-1}$ per ogni $k \ge 1$.
- 9. Siano $a, b, c \in \mathbf{Z}$ e siano $\alpha_1, \alpha_2, \alpha_3$ gli zeri complessi del polinomio $f = X^3 + aX^2 +$ $bX + c \in \mathbf{Z}[X].$
 - (a) Determinare la funzione simmetrica $(\alpha_1 + \alpha_2)(\alpha_1 + \alpha_3)(\alpha_2 + \alpha_3)$ in termini dei coefficienti di f.
 - (b) Determinate la funzione simmetrica $(\alpha_1 + \alpha_2)(\alpha_1 + \alpha_3) + (\alpha_1 + \alpha_2)(\alpha_2 + \alpha_3) + (\alpha_1 + \alpha_2)(\alpha_2 + \alpha_3)$ $(\alpha_1 + \alpha_3)(\alpha_2 + \alpha_3)$ in termini dei coefficienti di f.
 - (c) Determinare il polinomio monico cubico $g \in \mathbf{Z}[X]$ che ha $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$ e $\alpha_1 + \alpha_3$ come zeri. Esprimere i coefficienti in termini di a, b, c.
- 10. Calcolare il risultante di $X^4 1$ e $X^3 + 1$. Stessa domanda per $X^4 1$ e $X^3 1$.
- 11. Calcolare il discriminante del polinomio $X^7 + X + 1$.