ESERCIZI DI ALGEBRA DOMINI UNITARI, FATTORIZZAZIONE (1)

 $N.B.:\ il\ simbolo\ \diamondsuit\ contrassegna\ gli\ esercizi\ (relativamente)\ più\ complessi.$

— * —

- 1 Dimostrare che ogni dominio finito D è un campo.
- **2** Per ogni scelta di elementi primi p_1, \ldots, p_k in \mathbb{Z} , sia

$$\mathbb{Z}_{\{p_1,\ldots,p_k\}} := \left\{ p_1^{e_1} \cdots p_k^{e_k} z \mid e_1 \in \mathbb{Z}, \ldots, e_k \in \mathbb{Z}, z \in \mathbb{Z} \right\} \qquad \left(\subseteq \mathbb{Q} \right)$$

- (a) Dimostrare che $\mathbb{Z}_{\{p_1,\dots,p_k\}}$ è un sottoanello di $\mathbb Q$.
- (b) \diamondsuit Dimostrare che $\mathbb{Z}_{\{p_1,\ldots,p_k\}}$ è un dominio euclideo.
- (c) Calcolare il gruppo degli invertibili $U(\mathbb{Z}_{\{p_1,\ldots,p_k\}})$.
- (d) Se D è un dominio euclideo, trovare se possibile una opportuna generalizzazione, sotto ipotesi adeguate, dei precedenti risultati al caso di D al posto di $\mathbb Z$.
- ((<u>Suggerimento</u>: Sappiamo che \mathbb{Z} è dominio euclideo per la valutazione v(z) := |z|, la quale è moltiplicativa. Tenuto conto che gli elementi della forma $p_1^{e_1} \cdots p_k^{e_k}$, essendo invertibili in $\mathbb{Z}_{\{p_1,\ldots,p_k\}}$, devono avere valutazione minima, quale potrebbe essere la valutazione da prendere in $\mathbb{Z}_{\{p_1,\ldots,p_k\}}$ perché sia un dominio euclideo?))
- ${\bf 3}$ Sia D un dominio a fattorizzazione unica e sia Q(D)il suo campo dei quozienti. Sia $p\in D$ un primo di $D\,,$ e sia

$$D_{(p)} := \left\{ a/b \in Q(D) \mid a, b \in D, b \neq 0, b \notin (p) \right\}$$

Dimostrare che:

- (a) $D_{(p)}$ è un sottoanello di Q(D);
- (b) $D_{(p)}$ è un dominio euclideo;
- (c) quando si opera una divisione con resto in $D_{(p)}$, o il quoziente è nullo oppure il resto è nullo;
 - $(d)\,$ esiste in $D_{(p)}$ uno ed un solo ideale massimale, generato da p ;
 - (e) gli ideali I di $D_{(p)}$ sono tutti e soli della forma $I = (p^n)$ con $n \in \mathbb{N}$.
 - (f) Infine, si calcoli il gruppo $U(D_{(p)})$ degli invertibili di $D_{(p)}$.

4 — Sia D un dominio unitario e sia $p \in D$ un elemento primo in D tale che $\bigcap_{n=0}^{+\infty} \left(p^n\right) = \{0\}$. Detto Q(D) il campo dei quozienti di D, definiamo

$$D_{(p)} := \left\{ a/b \in Q(D) \mid a, b \in D, b \neq 0, b \notin (p) \right\}$$

Dimostrare che:

- (a) $D_{(p)}$ è un sottoanello di Q(D);
- (b) $D_{(p)}$ è un dominio euclideo;
- (c) quando si opera una divisione con resto in $D_{(p)}$, o il quoziente è nullo oppure il resto è nullo;
 - (d) esiste in $D_{(p)}$ uno ed un solo ideale massimale, generato da p;
 - (e) gli ideali I di $D_{(p)}$ sono tutti e soli della forma $I = (p^n)$ con $n \in \mathbb{N}$.
 - (f) Infine, si calcoli il gruppo $U(D_{(p)})$ degli invertibili di $D_{(p)}$.
- ${f 5}$ Sia D un dominio a fattorizzazione unica e sia Q(D) il suo campo dei quozienti. Fissiamo una famiglia $\Pi:=\left\{q_i\right\}_{i\in\mathcal{I}}$ di irriducibili in D tale che per ogni irriducibile $q\in D$ esista uno ed un solo indice $i\in\mathcal{I}$ tale che $q\sim q_i$. Sia poi

$$\mathbb{Z}_{fin}^{\Pi} := \left\{ \underline{e} = \left(e_i \right)_{i \in \mathcal{I}} \in \mathbb{Z}^{\Pi} \mid e_i = 0 \text{ per quasi tutti gli } i \in \mathcal{I} \right\}$$

Dimostrare che il gruppo moltiplicativo $\left(Q(D)^*;\cdot\right)$ del campo Q(D) è isomorfo al prodotto diretto $U(D)\times\mathbb{Z}_{fin}^{\Pi}$.

6 — Si consideri il dominio unitario $\mathbb{Z}[\sqrt{-5}]$ e in esso l'insieme

$$\mathcal{T} := \left\{ \zeta \in \mathbb{Z} \left[\sqrt{-5} \right] \mid N(\zeta) = 9 \right\}$$

dove N è la norma in \mathbb{C} , che per ogni $\zeta = a + b\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$ vale ovviamente $N(\zeta) = N(a + b\sqrt{-5}) = a^2 + 5b^2$. Dimostrare che:

- (a) $\mathcal{T} := \{3, -3, (2+\sqrt{-5}), (-2-\sqrt{-5}), (2-\sqrt{-5}), (-2+\sqrt{-5})\}$;
- (b) ogni elemento di \mathcal{T} è irriducibile ma non è primo;
- (c) $\mathbb{Z}\left[\sqrt{-5}\right]$ è un dominio atomico;
- (d) $\mathbb{Z}[\sqrt{-5}]$ non è un dominio a fattorizzazione unica;
- (e) $\mathbb{Z}[\sqrt{-5}]$ non è un dominio di Bézout;
- (f) $\mathbb{Z}\left[\sqrt{-5}\right]$ non è un dominio con M.C.D.
- 7 Sia D un dominio con MCD. Dimostrare che il MCD gode della "proprietà associativa", nel senso che per ogni $a_1, a_2, a_3 \in D^* := D \setminus \{0_p\}$ si ha

$$MCD(MCD(a_1, a_2), a_3) \sim MCD(a_1, MCD(a_2, a_3))$$

così che, in generale, resta ben definito (a meno di invertibili) il $MCD(a_1, a_2, \dots, a_k)$.

- 8 Dimostrare che in un dominio di Bézout ogni ideale che sia finitamente generato è necessariamente principale.
- 9 Nell'anello $\mathbb{Z}[i]$ degli interi di Gauß, calcolare MCD(a,b) ed una identità di Bézout per esso quando a:=4+4i e b:=-5+7i.
 - **10** Risolvere in $\mathbb{Q}[x]$ l'equazione diofantea

$$(x^3 - x^2 + 4x - 2)h(x) + (x^2 - 2x + 3)k(x) = 15$$

nelle incognite $h(x), k(x) \in \mathbb{Q}[x]$.

11 — Nel dominio unitario $\mathbb{Z}\left[\sqrt{8}\right]$, determinare quali tra gli elementi $\left(1+3\sqrt{8}\right)$, $\left(4-\sqrt{8}\right)$, $\left(-21+8\sqrt{8}\right)$ siano (eventualmente) tra loro associati.

$$((\underline{Soluzione}: (1+3\sqrt{8}) \sim (-21+8\sqrt{8})))$$

- 12 Si consideri il dominio unitario $\mathbb{Z}\left[\sqrt{-11}\ \right]$.
 - (a) Dimostrare che $\mathbb{Z}[\sqrt{-11}]$ è un dominio atomico.
 - (b) Dimostrare che $\mathbb{Z}[\sqrt{-11}]$ non è un dominio a fattorizzazione unica.
- (c) Determimare due fattorizzazioni in irriducibili (o "atomi") in $\mathbb{Z}\left[\sqrt{-11}\right]$ tra loro non equivalenti per ciascuno dei due elementi 15 e 45.

$$((\underbrace{Soluzione\ di\ (c)}: \ 15 = 3\cdot 5 = \left(2+\sqrt{-11}\ \right)\cdot \left(2-\sqrt{-11}\ \right), \\ 45 = 3\cdot 3\cdot 2 = \left(1+2\sqrt{-11}\ \right)\cdot \left(1-2\sqrt{-11}\ \right)))$$

 $\mathbf{13}$ — Nell'anello $\mathbb{Z}[i]$ degli interi di Gauß, si fattorizzino 168 e 3150 come prodotto di irriducibili (="atomi").

((Soluzione:
$$3150 = 3^2 \cdot 7 \cdot (1+i) \cdot (1-i) \cdot (1+2i)^2 \cdot (1-2i)^2$$
, $168 = (1+i)^3 \cdot 3 \cdot 7$))

- ${f 14}$ Nell'anello $\mathbb{Z}[\,i\,]$ degli interi di Gauß, si considerino l'ideale $\,I:=\left(3-i\,,\,2-16\,i
 ight)$ e l'anello quoziente $\,A:=\,\mathbb{Z}[\,i\,]\Big/I\,$.
 - (a) Determinare un generatore dell'ideale I .
 - (b) Calcolare, se esiste, l'inverso $\overline{7+2\,i}^{-1}$ della classe $\overline{7+2\,i}\in\mathbb{Z}[\,i\,]\Big/I$.
 - **15** P Dimostrare che gli anelli quoziente $\mathbb{Z}[\,x,y,z]\Big/\big(\,x\,y+1\,,\,x-y\,\big)\qquad \mathrm{e}\qquad \mathbb{Z}[\,x,y,t]\Big/\big(\,x\,t+1\,,\,x-y\,\big)$

sono domini a fattorizzazione unica, e calcolarne i rispettivi gruppi delle unità.

$$V_{-1} \, := \, \left\{ \, 0_{\!\scriptscriptstyle A} \, \right\} \ , \qquad V_n \, := \, \left\{ \, b \in A \, \left| \, V_{n-1} \longrightarrow A \big/ (b) \, \right. \, \text{\`e suriettiva} \, \right\} \, \, \bigcup \, \left\{ \, 0_{\!\scriptscriptstyle A} \, \right\} \quad \, \forall \, \, n \in \mathbb{N} \, \, \, .$$

Dimostrare che:

- $(a) V_0 \setminus V_{-1} = U(A) ;$
- (b) $V_{\ell} \subseteq V_t \quad \forall \quad \ell \le t \text{ in } \mathbb{N} \quad ;$
- (c) \diamondsuit A è dominio euclideo \iff $\bigcup_{n=-1}^{+\infty} V_n = A$.

((<u>Suggerimento per la "=>" in (c)</u>: Supponendo che A sia dominio euclideo, siano $v_0 < \overline{v_1} < \cdots < v_{n-1} < v_n < v_{n+1} < \cdots$ tutti i diversi valori, in ordine strettamente crescente, assunti dalla valutazione $v: A^* := A \setminus \{0_A\} \longrightarrow \mathbb{N}$ di A. Si definiscano allora i sottoinsiemi $W_{-1} := \{0_A\}$, $W_n := \{r \in A^* \mid v(r) \leq v_n\} \cup \{0_A\}$ per ogni $n \in \mathbb{N}$, e si dimostri che $V_n = W_n$ per ogni $n \geq -1$. Da questo poi si ricavi che $\bigcup_{n=-1}^{+\infty} V_n = A$.))

17 P — Usando il *Criterio* dato nell'esercizio 14 qui sopra, dimostrare che per ogni $n \in \mathbb{N}$ con n > 2 i domini unitari $\mathbb{Z}[\sqrt{-n}]$ non sono domini euclidei.

((Suggerimento: Calcolare V_0 e V_1 , e trarre poi le conclusioni dal risultato trovato...))