ALGEBRA 2 — 2007/2008

Prof. Fabio Gavarini

Sessione autunnale — prova scritta del 16 Settembre 2008
N.B.: compilare il compito in modo sintetico ma esauriente, spiegando chiaramente quanto si fa, e scrivendo in corsivo con grafia leggibile.

- [1] Si consideri nel campo $\mathbb C$ dei numeri complessi il numero $\alpha:=5-\left(\sqrt[3]{7}\right)^2$.
 - (a) Calcolare il polinomio minimo $f_{\alpha}(x) \in \mathbb{Q}[x]$ di α su \mathbb{Q} .
 - (b) Calcolare il campo di spezzamento $\mathbb{Q}_{f_{\alpha}}$ di $f_{\alpha}(x)$ su \mathbb{Q} .
 - (c) Calcolare il grado ed una base dell'estensione $\mathbb{Q} \subseteq \mathbb{Q}_{f_{\alpha}}$.
- (d) (facoltativo) Descrivere esplicitamente un automorfismo non banale dell'estensione $\mathbb{Q} \subseteq \mathbb{Q}_{f_{\alpha}}$ (in altre parole, un elemento diverso dall'identità del gruppo di Galois dell'estensione), precisando la sua azione su una base dell'estensione.
- [2] Sia G un gruppo di ordine dispari, e sia N un sottogruppo normale di G di ordine 5.
 - (a) Dimostrare che N è contenuto nel centro di G.
- (b) (facoltativo) Se si suppone invece che N abbia ordine 7, vale ancora il risultato analogo di (a)?

[3] — Si consideri l'anello quoziente

$$\mathbb{F} := \mathbb{Z}[x] / (7, x^3 - 5x + 1)$$

- (a) Determinare se esiste in \mathbb{F} l'elemento $(\overline{3+x-5\,x^4})^{-1}$ inverso di $(\overline{3+x-5\,x^4})$. In caso affermativo, lo si calcoli esplicitamente; in caso negativo, si spieghi perché esso non esista.
 - (b) Determinare se \mathbb{F} è un campo oppure no.
 - (c) (facoltativo) Calcolare caratteristica e cardinalità di \mathbb{F} .
- [4] Sia p un numero primo, sia $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ il campo con p elementi e sia $\mathbb{F}_p^* := \mathbb{F}_p \setminus \{0\}$. Si consideri il gruppo di matrici (rispetto al prodotto righe per colonne)

$$T_2(\mathbb{F}_p) := \left\{ \begin{pmatrix} \alpha & c \\ 0 & \beta \end{pmatrix} \middle| \alpha, \beta \in \mathbb{F}_p^*, c \in \mathbb{F}_p \right\}$$

e i suoi sottoinsiemi

$$U_2(\mathbb{F}_p) := \left\{ \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \middle| c \in \mathbb{F}_p \right\}, \ D_2(\mathbb{F}_p) := \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \middle| \alpha, \beta \in \mathbb{F}_p^* \right\}$$

- (a) Dimostrare che $U_2(\mathbb{F}_p)$ e $D_2(\mathbb{F}_p)$ sono sottogruppi di $T_2(\mathbb{F}_p)$.
- (b) Dimostrare che $U_2(\mathbb{F}_p)$ è un p-sottogruppo di Sylow di $T_2(\mathbb{F}_p)$, ed è normale.
- (c) (facoltativo) Dimostrare che $T_2(\mathbb{F}_p) = D_2(\mathbb{F}_p) \ltimes U_2(\mathbb{F}_p)$, cioè $T_2(\mathbb{F}_p)$ è prodotto semidiretto di $D_2(\mathbb{F}_p)$ e $U_2(\mathbb{F}_p)$.
- (d) (facoltativo) Se \mathbb{F}_q è il campo finito con $q = p^n$ elementi, con p primo, e se $T_2(\mathbb{F}_q)$, $U_2(\mathbb{F}_q)$ e $D_2(\mathbb{F}_q)$ sono definiti in modo analogo a prima, valgono i risultati analoghi di (a), (b) e (c)?