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weniger enthält, J. reine angew. Math. 42 (1851), 117–124.

O. Hesse, Zur Theorie der ganzen homogenen Functionen, J.
reine angew. Math. 56 (1859), 263–269.
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f (x0, . . . , xN) ∈ C[x0, . . . , xN ]d , d ≥ 1, f = fred.

X = V (f ) ⊂ PN associated degree d projective hypersurface.

HessX = H(f ) =

[
∂2f

∂xi∂xj

]
0≤i ,j≤N

,

hessian matrix of X (or of f , in this case indicated by H(f )).
Clearly

H(f ) = 0(N+1)×(N+1) ⇐⇒ d = 1.

From now on d ≥ 2.



hessX = det(HessX )

hessian of X (or of f , in this case indicated by h(f )). There are
two possibilities:

1 either hessX ≡ 0

2 or hessX ∈ C[x0, . . . , xN ](N+1)(d−2).

We shall be interested in case 1), that is in hypersurfaces with
vanishing hessian.



Trivial Examples

1 If ∂f
∂xi

= 0 for some i ⇒ h(f ) = 0.

2 Let Â ∈ GLN+1(C), let x̂ = Âx and let

f̂ (x) = f (Âx).

We shall say that f̂ is linearly equivalent to f , indicated by

f̂ ∼ f .

Then
h(f̂ ) = 0 ⇐⇒ h(f ) = 0.

3 If ∂f
∂x0
, . . . , ∂f∂xN are linearly dependent ⇒ h(f ) = 0.



Cones

Proposition

Let X = V (f ) ⊂ PN hypersurface, d = deg(X ) ≥ 2. Then the
following conditions are equivalent:

(i) X is a cone;

(ii) There exists a point p ∈ X of multiplicity d;

(iii) The partial derivatives ∂f
∂x0
, ∂f∂x1

, ..., ∂f∂xN of f are linearly
dependent;

(iv) Up to a projective transformation, f depends on at most N
variables.

(v) The dual variety of X , X ∗ ⊂ (PN)∗, is degenerated, i.e.
< X ∗ >( PN∗.



Hesse’s Claim

hessX ≡ 0⇒ X = V (f ) ⊂ PN is a cone.

Or equivalently

hessX ≡ 0⇒ ∂f
∂x0
, . . . , ∂f∂xN are linearly dependent.



Low dimension & low degree

For N = 1 Calculus I yields Hesse’s Claim.
Suppose from now on N ≥ 2.

N ≥ 2 & d = 2:

f (x) = xt · B · x ∼ x2
0 + . . .+ x2

r

with r + 1 = rk(B) and with h(f ) = det(B). Thus for d = 2,

X = V (f ) ⊂ PN is a cone ⇐⇒ hessX ≡ 0.



Gordan-Noether Theorem

From now on N ≥ 2 and d ≥ 3.

Theorem (Gordan-Noether, 1876)

Let X = V (f ) ⊂ PN hypersurface, d = deg(X ) ≥ 3. Then:

1 If N ≤ 3, Hesse’s Claim is true.

2 ∀N ≥ 4 & ∀d ≥ 3 there exist counterexamples to Hesse’s
Claim.

The counterexamples are
..... a rare enough phenomenon to merit special study,
J. G. Semple & J. A. Tyrrell.



”Un esempio semplicissimo” by U. Perazzo

f (x0, x1, x2, x3, x4) = x0x2
3 + x1x3x4 + x2x2

4 .

PERAZZO CUBIC HYPERURFACE∼ 1900=
BOURGAIN (SACKSTEDER) TWISTED PLANE∼ 1990

∂f

∂x0
= x2

3 ,
∂f

∂x1
= x3x4,

∂f

∂x2
= x2

4 ,

∂f

∂x3
= 2x0x3 + x1x4,

∂f

∂x4
= x1x3 + 2x2x4

are linearly independent but ALGEBRAICALLY
DEPENDENT:

∂f

∂x0

∂f

∂x2
− (

∂f

∂x1
)2 = x2

3 x2
4 − (x3x4)2 = 0.

⇒ h(f ) = 0 (as we shall see in a moment).



Perazzo’s First Classification result

Series of examples for N ≥ 4 and d = 3:

g(x0, x1, x2, x3, x4, . . . , xN) = x0x2
3 + x1x3x4 + x2x2

4 + x3
5 + . . .+ x3

N .

Then h(g) = 0 and X = V (g) ⊂ PN is not a cone.

Theorem (Perazzo, 1901)

Let X = V (f ) ⊂ P4 be a cubic hypersurface, not a cone. Then

f ∼ x0x2
3 + x1x3x4 + x2x2

4 .

Indeed, not too many examples, at least in degree 3 and for not
too many variables.



Gordan-Noether Cremona equivalence Theorem

Theorem (Gordan-Noether, 1876)

Let X = V (f ) ⊂ PN hypersurface, d = deg(X ) ≥ 2 with hX ≡ 0.
Then there exists a Cremona transformation

Φ : PN 99K PN

such that Φ(X ) is a cone.
Moreover the Cremona transformation can be explicitly
constructed from f in such a way that the equation of φ(X )
depends on at most N variables.

For example the Perazzo hypersurface

X = V (x0x2
3 + x1x3x4 + x2x2

4 ) ⊂ P4

is Cremona equivalent to

V (x1x3 + x2x4) ⊂ P4 or to V (x0x2
3 + x2x2

4 ) ⊂ P4



Algebro-geometric translation: the Polar Map

∇f = ∇X : PN 99K PN∗

p → ( ∂f∂x0
(p) : . . . : ∂f

∂xN
(p)

is the polar (or gradient) map of X = V (f ) ⊂ PN .

Sing(X ) := V ( ∂f∂x0
, . . . , ∂f∂xN ) ⊂ PN , base locus scheme of

∇X .

Z := ∇f (PN) ⊆ (PN)∗ polar image of PN

The restriction of ∇f to X is the Gauss map of X :

GX = ∇f |X : X 99K PN∗

p ∈ Xreg → GX (p) = [TpX ].

X ∗ := GX (X ) ( Z ,

is the dual variety of X , parametrizing singular hyperplane
sections of X .



Algebro-geometric translation: the Polar map

KEY FORMULA: H(f ) = Jac(∇f : CN+1 → CN+1).

T∇f (p)Z = P(Im(H(f )(p))) ⊆ (PN)∗ ∀p ∈ PN general.

dim Z = rk(H(f ))− 1

h(f ) ≡ 0 ⇐⇒ Z ( PN∗

⇐⇒ ∃g ∈ C[y0, . . . , yN ] : g(
∂f

∂x0
, . . . ,

∂f

∂xN
) ≡ 0.

⇐⇒ ∂f

∂x0
, . . . ,

∂f

∂xN
are algebraically dependent

∂f

∂x0
, . . . ,

∂f

∂xN
algebraically dependent

Hesse′sClaim⇒

∂f

∂x0
, . . . ,

∂f

∂xN
linearly dependent?



Curvature and h(f )

Lemma

(d − 1)x2
0 h(f ) =

∣∣∣∣∣∣∣∣∣∣

d
d−1 f ∂f

∂x1
· · · ∂f

∂xN
∂f
∂x1

∂2f
∂x2

1
· · · ∂2f

∂x1∂xN
...

...
. . .

...
∂f
∂xN

∂2f
∂x1∂xN

· · · ∂2f
∂xN∂xN

∣∣∣∣∣∣∣∣∣∣

K (p) = −

∣∣∣∣∣∣∣∣∣∣
0 ∂f

∂x1
(p) · · · ∂f

∂xN
(p)

∂f
∂x1

(p) ∂2f
∂x2

1
(p) · · · ∂2f

∂x1∂xN
(p)

...
...

. . .
...

∂f
∂xN

(p) ∂2f
∂x1∂xN

(p) · · · ∂2f
∂xN∂xN

(p)

∣∣∣∣∣∣∣∣∣∣
(( ∂f∂x1

(p))2 + . . . ( ∂f
∂xN

(p))2)
N+1

2

is the Gaussian Curvature of X = V (f ) ⊂ PN at
p ∈ (X \ Sing(X )) ∩ (PN \ V (x0)).



Curvature and h(f )

h(f ) ≡ 0⇒ h(f ) ≡ 0 (mod. f ) ⇐⇒ K ≡ 0.

N = 2, C = V (f ) ⊂ P2 reducible curve of degree d

H(C ) = V (h(f )) ⊂ P2 Hessian curve of C
(H(C ) = P2 ⇐⇒ h(f ) ≡ 0)

f /h(f ) ⇐⇒ C ⊆ H(C ) ⇐⇒ every p ∈ C \ Sing(C ) is a
flex ⇐⇒ C is a union of lines.

f (x0, x1, x2) = x0x1x2 ⇒ h(f ) = 2x0x1x2 6≡ 0 but h(f ) = 0
(mod. f ).

h(f ) = 0
?⇒ the lines pass through a fixed point,

that is C is a cone?

Gordan-Noether Theorem is true for N = 2:

C is a cone ⇐⇒ h(f ) ≡ 0.



Gordan-Noether Theorem in P3

Let us recall a more or less well known result about the
characterization of developable surfaces in R3.

Theorem

Let S = V (f ) ⊂ P3 be an irreducible surface. Then the following
conditions are equivalent:

1 K (p) = 0 ∀p ∈ Sreg (that is f divides h(f ));

2 S is a cone or S is the developable of tangent lines to
C ⊂ P3 (equivalently S is a developable surface).

Let us state Gordan-Noether’s refinement:

Theorem (Gordan-Noether, 1876)

Let S = V (f ) ⊂ P3. Then

S is a cone ⇐⇒ h(f ) ≡ 0.



What measures f divides h(f )?

Let
GX : X 99K X ∗ ⊆ Z ⊆ (PN)∗.

Lemma (B. Segre, 1951)

Let X = V (f ) = X1 ∪ . . . ∪ Xr ⊂ PN , with Xi = V (fi ) and
f = f1 · · · fr , p ∈ Xi general. Then

rk(dGX )p = rk(fi ) H(f )− 2.

In particular

dim(X ∗i ) = rk(dGX )p = rk(fi ) H(f )−2 ≤ rk(H(f ))−2 ≤ dim(Z )−1.

h(f ) ≡ 0⇒ X ∗ ( Z ( (PN)∗.



Proof of the Lemma (vector=column vector)

X̂ = V (f ) ⊂ CN+1, v : [v] = p ∈ X=V (fi ),

w ∈ TvX̂ = TvX̂i ⇐⇒ ∇fi (v)t ·w = 0 ⇐⇒ ∇f (v)t ·w = 0.

vt · (H(f )(v) = (d − 1)∇f (v) =⇒

vt · (H(f )(v)) ·w = (d − 1)∇f (v)t ·w = 0.

(dGX )v = dGXi
: TvX̂ → CN+1, (dGX )v(TvX̂ ) ⊆ ∇f (v)t · x = 0.

L : V →W linear, V1 ⊂ V ,W1 ⊂W , codim(V1) = codim(W1) = 1,

L(V ) 6⊂W1, L(V1) ⊆W1 ⇒ rk(L|V1
) = rk(L)− 1.



Gordan-Noether Identity

f ∈ C[x0, . . . , xn]d , f = fred

h(f ) ≡ 0

⇒ ∃g ∈ C[y0, . . . , yn] : g(∇f (x)) = g(
∂f

∂x0
(x), . . . ,

∂f

∂xn
(x)) ≡ 0.

Z ⊆ T = V (g) ⊂ PN (we can assume equality if
codim(Z ) = 1);

we can also assume ∂g
∂yi

(∇f (x)) 6≡ 0 for some i by taking g a
generator of minimal degree in I (Z );

Well defined
ψg = ∇g ◦ ∇f : PN 99K PN

(first instance of Gordan-Noether-Perazzo map).



Functions hi

e = deg(g(y)) ≥ 1 (if e = 1, then X is a cone)

g(∇f (x)) ≡ 0
Euler’s Formula

=⇒ 0 = e·g(∇f (x)) =
N∑
i=0

∂f

∂xi
(x)

∂g

∂yi
(x)(∇f (x)).

Let

ρ(x) = m.c .d(
∂g

∂y0
(∇f (x)), . . . ,

∂g

∂yN
(∇f (x)))

so that

ρ(x) · hi (x) =
∂g

∂yi
(∇f (x))

and
ψg = (h0 : . . . : hN) : PN → PN ,

with m.c .d .(h0, . . . , hN) = 1.



Gordan-Noether Identity

Theorem (Gordan-Noether, 1876)

(Gordan–Noether Identity) Let notation be as above and let
F ∈ C[x0, . . . , xN ]m. Then:∑N

i=0
∂F
∂xi

(x)hi (x) = 0 ⇐⇒ F (x) = F (x + λψg (x))

∀λ ∈ K ⊇ C, ∀x ∈ CN+1.

(Idea of proof) The implication ⇐ is trivial. Consider ⇒.

F (x)− F (x + λψg (x)) =
m∑

k=1

Φkλ
k .

Φ1 =
N∑
i=0

∂F

∂xi
hi = 0

by hypothesis. First year Calculus + some identities of ψg (x) yields

Φk = 0⇒ Φk+1 = 0 (proof postponed).



Gordan -Noether Identity for f

Euler Formula:
N∑
i=0

yi
∂g

∂yi
(y) = e · g(y) =⇒

0 = e · g(∇f (x)) =
N∑
i=0

∂f

∂xi

∂g

∂yi
(∇f (x)) = ρ(x)(

N∑
i=0

∂f

∂xi
(x)hi (x)),

=⇒
f (x) = f (x + λψg (x)), ∀x ∈ CN+1 ∀λ ∈ K ⊇ C.

In particular if p ∈ X = V (f ) and if Ψg is defined at p we have

0 = f (p) = f (p + λψg (p)), ∀λ ∈ K ⊇ C

so that the line < p, ψg (p) > is contained in X . We shall see in a
moment that X is developable at least along < p, ψg (p) >.



Gordan-Noether Identity for the Polar Map

∂

∂xj
g(∇f ) ≡ 0

Chain Rule
N∑
i=0

∂2f

∂xj∂xi
hi = 0

by Gordan-Noether Identitites

∂f

∂xj
(x) =

∂f

∂xj
(x+λψg (x)) ∀j = 0, . . . ,N, ∀x ∈ CN+1, ∀λ ∈ K ⊇ C,

so that
∇f (x) = ∇f (x + λψg (x)) ; ∀x ∈ CN+1.

In particular

∂f

∂xj
(ψg (x)) = 0 ∀j = 0, . . . ,N ∀x ∈ CN+1 =⇒ ψg (PN) ⊆ Sing(X ).



Hesse Claim for N = 2

Let us recall that h(f ) ≡ 0 yields

X ∗ ( Z ( P2.

Then Z = V (g) ⊂ P2 and by Gordan-Noether Identity

f (x) = f (x + λψg (x)) ∀λ ∈ C ∀x ∈ C3.

Thus

Z ∗ ⊆ Sing(X ) ⊂ P2 ⇒ ψg (P2) = Z ∗ = {point}

0 = f (p) = f (p + λψg (p)) ∀p ∈ X ∀λ ∈ C,

i.e.
X = { union of lines through Z ∗}.



Gordan-Noether Identity for ψg (x)

Lemma

Let F = F1 · F2 ∈ C[x0, . . . , xN ]m with Fi ∈ C[x0, . . . , xN ]mi ,
i = 1, 2. Then

F (x) = F (x + λψg (x)) ⇐⇒ Fi (x) = Fi (x + λψg (x))
∀λ ∈ K ⊇ C, ∀x ∈ CN+1 i = 1, 2,∀λ ∈ K ⊇ C,∀x ∈ CN+1

The implication ⇐ is obvious. Consider ⇒. Write

Fi (x + λψg (x)) =

di∑
j=0

Ai
j(x)λj ∈ (C[x])[λ].

From

F1(x + λψg (x)) · F2(x + λψg (x)) = F (x + λψg (x)) = F (x) ∈ C[x]

we deduce d1 = d2 = 0 so that

Fi (x + λψg (x)) = Ai
0(x) = Fi (x).



Gordan-Noether Identity for ψg (x)

Let gj = ∂g
∂yj

(∇f (x)) and recall that

N∑
i=0

∂2f

∂xk∂xi
hi = 0 ∀k = 0, . . . ,N.

Then
N∑
i=0

∂gj
∂xi

hi =
N∑
i=0

(
N∑

k=0

∂gj

∂( ∂f∂xk )

∂2f

∂xk∂xi
)hi

=
N∑

k=0

∂gj

∂( ∂f∂xk )
(

N∑
i=0

∂2f

∂xk∂xi
hi ) = 0.

Since gj(x) satisfy the Gordan-Noether Identity also hj(x) satisfy
the Identity.



Gordan-Noether Identity for ψg (x)

hj(x) = hj(x + λψg (x))

∀λ ∈ K ⊇ C, ∀x ∈ CN+1 ∀j = 0, . . . ,N,

implies

ψg (x) = ψg (x + λψg (x)) ∀λ ∈ K ⊇ C,∀x ∈ CN+1.

In particular
ψg (ψg (x)) = 0

and
ψg (PN) ⊆ V (h0, . . . , hN) = Bs(ψg ) ⊂ PN ,

yielding
codim(ψg (PN)) ≤ 2.



Another proof of Hesse Claim for N = 2

ψg (P2) ⊆ Bs(ψg ) = V (h0, h1, h2) =⇒ ψg (P2) = q ∈ Bs(ψg (P2))

Then for every p ∈ X \ (X ∩ Bs(ψg )) and for every λ ∈ C we have

0 = f (p) = f (p + λψg (p)) = f (p + λq)

=⇒ 〈p, q〉 ⊆ X =⇒ X union of lines through q,

that is a cone with vertex q = ψg (P2).



An useful Remark

The following useful Remark is contained in Lemma 3.10 of
Ciliberto-Russo-Simis:

Lemma

Let X = V (f ) ⊂ PN be a hypersurface. Let H = Pn−1 be a
hyperplane not contained in X , let h = H∗ be the corresponding
point in (PN)∗ and let πh denote the projection from the point h.
Then:

∇X∩H = πh ◦ (∇X |H).

In particular, ∇V (f )∩H)(H) ⊂ πh(Z ).



Hesse Claim for N = 3

h(f ) ≡ 0 =⇒ X ∗ ( Z ( (P3)∗,

and
ψg (P3) ⊆ V (h0, h1, h2, h3) ⊂ P3

Two cases:
1 dim(ψ(P3)) = 0⇒ X cone;
2 or dim(ψg (P3)) = 1 and ψg (P3) is an irreducible component

of Bs(ψg ).

By the Lemma and the N = 2 case we can suppose
Z = V (g) ⊂ P3

(otherwise a general plane section of X consists of d lines through
a point, X is a union of d planes through a line and the claim is
true)
so that

ψg (p) = ψg (p + λψg (p)) λ ∈ C ∀p ∈ P3



Hesse Claim for N = 3

Let
q1, q2 ∈ ψg (P3) general points

ψ−1
g (qi ) union of cones with vertex qi

⇒ ψ−1
g (qi ) union of cones of vertex qi .

ψ−1
g (q1)∩ψ−1

g (q2) ⊆ V (h0, h1, h2, h3) = Bs(ψg ) is a union of curves

r ∈ ψ−1
g (q1) ∩ ψ−1

g (q2), r 6= qi , i = 1, 2.

〈r , qi 〉 ⊆ ψ−1
g (qi ) ∩ Bs(ψg ).



Hesse Claim for N = 3

By contradiction let

q ∈< r , qi > ∩ψ−1
g (qi ).

From

ψg (q) = ψg (q + λqi )⇒ ψg (r) = ψg (q) 6= 0⇒ r 6∈ Bs(ψg ).

=⇒< r , qi >= ψg (P3) = Bs(ψg )

=⇒ Bs(ψg ) = ψg (P3) = Z ∗ =< q1, q2 >

CONTRADICTION (no surface has a line as dual variety!).



dim(∇f (PN)) ≤ 2 implies X a cone

The previous results and the Useful Remark/Lemma yield:

Corollary

Let X = V (f ) ⊂ PN be a hypersurface with vanishing hessian. If
dim(∇f (PN)) ≤ 2, then X is a cone with positive dimensional
vertex.

How small can be Z without being X being a cone? This is a very
intriguing and quite subtle question.



Proof Φk = 0⇒ Φk+1 = 0

F (x + λψg (x))− F (x) =

deg(F )∑
k=0

Φkλ
k

Φ1 = 0 by hip. Suppose Φk =
∑
i1,...,ik

∂kF

∂xi1 . . . ∂xik

hi1 · · · hik

k!
= 0

(∗) =
N∑
j=0

hj ·
∂

∂xj
(hi1 · · · hik ) = 0 (iterate the identity for hi (x)).

Φk+1 =
1

k + 1

N∑
j=0

hj [
∑
i1,...,ik

∂

∂xj
(

∂kF

∂xi1 . . . ∂xik
) · hi1 · · · hik

k!
] + (∗) =

=
1

k + 1

N∑
j=0

hj
∂Φk

∂xj
= 0.



Cremona equivalence with a cone

(h0(x), . . . , hN(x)) 6= 0.

We can suppose hN(x) 6= 0 and take

λ = − xN
hN(x)

∈ C(x0, . . . , xN) ⊇ C.

Thus by Gordan-Noether Identity

hi (x) = hi (x− xN
hN(x)

ψg (x)) = hi (x0−
xN
hN

h0, . . . , xN−1−
xN
hN

hN−1, 0).



Cremona equivalence with a cone



x ′0 = x0 − h0(x)
hN(x) xN

...

x ′i = xi − hi (x)
hN(x) xN

...
x ′N = xN

x0 = x ′0 + h0(x)
hN(x) x ′N = x ′0 +

h0(x ′0,...,x
′
N−1,0)

hN(x ′0,...,x
′
N−1,0) x ′N

...

xi = x ′i + hi (x)
hN(x) x ′N = x ′i +

hi (x
′
0,...,x

′
N−1,0)

hN(x ′0,...,x
′
N−1,0) x ′N

...
xN = x ′N



Cremona equivalence to a cone

f (x) = f (x− xN
hN(x)

ψg (x)) = f (x ′0, . . . , x
′
N−1, 0).

We have thus proved

Theorem (Gordan-Noether, 1876)

Let X = V (f ) ⊂ PN be a hypersurface, d = deg(X ) ≥ 2, with
h(f ) ≡ 0. Then there exists a Cremona transformation

Φ : PN 99K PN

such that Φ(X ) is a cone.
Moreover the Cremona transformation can be explicitly
constructed from f in such a way that the equation of Φ(X )
depends on at most N variables.



Example Perazzo hypersurface in P4

f (x) = x0x2
3 + x1x3x4 + x2x2

4

g(y) = y0y2 − y 2
1

(h0, . . . , h4) = (x2
4 ,−2x3x4, x

2
3 , 0, 0), h0 6= 0



x ′0 = x0

x ′1 = x1 + 2 x3
x4

x0

x ′2 = x2 − x2
3

x2
4

x0

x ′3 = x3

x ′4 = x4



x0 = x ′0
x1 = x ′1 − 2

x ′3
x ′4

x ′0

x2 = x ′2 +
x ′3

2

x ′4
2 x ′0

x3 = x ′3
x4 = x ′4

f (0, x ′1, x
′
2, x
′
3, x
′
4) = x ′1x ′3x ′4 + x ′2x ′4

2 = x ′4(x ′1x ′3 + x ′2x ′4)

Φ(V (x0x2
3 + x1x3x4 + x2x2

4 )) = V (x1x3 + x2x4).



Another Cremona equivalence

f (x) = x0x2
3 + x1x3x4 + x2x2

4

g(y) = y0y2 − y 2
1

(h0, . . . , h4) = (x2
4 ,−2x3x4, x

2
3 , 0, 0)

Since h1 6= 0

x ′0 = x0 +
x2

4
2x3x4

x1

x ′1 = x1

x ′2 = x2 +
x2

3
2x3x4

x1

x ′3 = x3

x ′4 = x4



x0 = x ′0 − x ′4
2

2x ′3x
′
4
x ′1

x1 = x ′1
x2 = x ′2 − x ′3

2

2x ′3x
′
4
x ′1

x3 = x ′3
x4 = x ′4

f (x ′0, 0, x
′
2, x
′
3, x
′
4) = x ′0x ′3

2 + x ′2x ′4
2

Φ(V (x0x2
3 + x1x3x4 + x2x2

4 )) = V (x0x2
3 + x2x2

4 ).



Cremona Linearization of the Veronese Surface in P5

f (x) =

∣∣∣∣∣∣
x0,0 x0,1 x0,2

x0,1 x1,1 x1,2

x0,2 x1,2 x2,2

∣∣∣∣∣∣ , h(f ) = −16f 2 6= 0

X = V (f ) ⊂ P5 secant variety Veronese surface S ⊂ P5



x ′0,0 = x0,0

x ′0,1 = x0,1

x ′0,2 = x0,2

x ′1,1 = x1,1 − x2
0,1

x ′1,2 = x1,2 − x0,1x0,2

x ′2,2 = x2,2 − x2
0,2



x0,0 = x ′0,0
x0,1 = x ′0,1
x0,2 = x ′0,2
x1,1 = x ′1,1 + x ′0,1

2

x1,2 = x ′1,2 + x ′0,1x ′0,2
x2,2 = x ′2,2 + x ′0,2

2

Φ(S) = V (x1,1, x1,2, x2,2) ⊂ P5

Φ(V (f )) = V (x1,1x2,2 − x2
1,2) ⊂ P5 is a cone with vertex Φ(S).



Gordan-Noether Identity to the Polar Map

Corollary

Let X = V (f ) ⊂ PN be a hypersurface with vanishing hessian and
let notation be as above. Then

(i) for p ∈ PN general,

∇−1
f (∇f (p)) =< p, (T∇f (p)Z )∗ >= Pcodim(Z).

(ii)

Z ∗ =
⋃

p∈PNgeneral

(T∇f (p)Z )∗ ⊆ Sing(X ).



X = S(1, 2)∗ ⊂ P4 has vanishing hessian and it is not a
cone

Let S(1, 2) ⊂ (P4)∗ the cubic rational normal scroll surface
generated by a line L ⊂ P4 and a conic C ⊂ P4: L ∩ 〈C 〉 = ∅.
Then:

X = S(1, 2)∗ = V (x0x2
3 + x1x3x4 + x2x2

4 ) ⊂ P4 is a Perazzo
Cubic Hypersurface;

Sing(X )red = P2 = L⊥ ⊂ X ⊂ P4 (hyperplanes through the
directrix line L);

Z = V (y0y2 − y 2
1 ) ⊂ (P4)∗ is a quadric cone with vertex L;

Sing(X ) is non reduced along the conic Z ∗ ⊂ Sing(X );

the hyperplanes Tr Sing(X ) ⊃ TrZ ∗, r ∈ Z ∗ foliate P4 and
Tr Sing(X ) ∩ X are planes foliating X , i.e X is a scroll in
planes tangent to Z ∗.

hessX ≡ 0.



Hypersurfaces with vanishing hessian in P4

Theorem (Gordan-Noether, 1876; Franchetta, 1954)

Let X ⊂ P4 be an irreducible hypersurface, not a cone, and let
d = deg(X ). The following conditions are equivalent:

1 X has vanishing hessian;

2 X is a scroll in P2 tangent to a plane rational curve induced
by a foliation of hyperplanes on X ;

3 X ' S∗ with S ⊂ P4 a degree d scroll surface with directrix a
line over a rational plane curve.

Also in this case we have that Z ∗ is a plane rational curve with
< Z ∗ >= P2 ⊂ Sing(X ).
Moreover Z is a cone over a plane rational curve.



Key question

hessX ≡ 0⇒ Z ∗ ⊂ Sing(X ).

The key question:

< Z ∗ >= Pτ
?
⊆ Sing(X ).

Also for Cubics a priori we only have:

Z ∗ ⊂ Sing(X )⇒ SZ ∗ ⊆ X ,

where SZ ∗ is secant variety to Z ∗ ⊂ PN . One would desire

SZ ∗ ⊆ Sing(X ).



N = 4: hessX ≡ 0⇒< Z ∗ >= P2 ⊆ Sing(X )

ACCORDING to Garbagnati-Repetto, PRAGMATIC 2006:

Z ∗ ⊆ Bs(ψg ) ⊂ P4 =⇒ 1 ≤ dim(Z ∗) ≤ dim(Bs(ψg )) ≤ 2.

dim(Z ∗) = 2, r1, r2 ∈ Z ∗ general =⇒ ∃t ∈ ψ−1
g (r1) ∩ ψ−1

g (r2),

=⇒< ri , t >⊆ Bs(ψg ) = Z ∗ =⇒ Z ∗ cone

=⇒ Z ⊂ (P4)∗degenerated =⇒ X ⊂ P4 cone.

CONTRADICTION. Thus dim(Z ∗) = 1 and dim(Bs(ψg )) = 2.



N = 4: hessX ≡ 0⇒< Z ∗ >= P2 ⊆ Sing(X )

dim(Z ∗) = 1, r1, r2 ∈ Z ∗ general =⇒ dim(ψ−1
g (r1)∩ψ−1

g (r2)) = 2,

+ ψ−1
g (r1) ∩ ψ−1

g (r2) ⊆ Bs(ψg ) =⇒

∃ an irreducible surface P, irreducible component of Bs(ψg ):

Z ∗ ⊆ P, P ⊆ ψ−1
g (r1) ∩ ψ−1

g (r2) ∀r1, r2 ∈ Z ∗ general .

=⇒< ri , p >⊆ P ∀p ∈ P general

=⇒ Z ∗ ⊆ Vert(R) =⇒ P = P2 = 〈Z ∗〉.



Classification for N ≥ 5

1 for every d ≥ 3 and for every N ≥ 5 there exist many different
classes of examples (Ciliberto, —–, Simis; 2008);

2 for all them 〈Z ∗〉 ⊂ Sing(X ).

3 the first challenging case is N = 5 to try to show
〈Z ∗〉 ⊂ Sing(X ).

4 ONE MORE GORDAN-NOETHER IDENTITY IS MISSING:

TrZ ∗ ⊂ Sing(X )⇐⇒
N∑
i=0

∂2hj

∂xk∂xi
hi = 0

=⇒ TZ ∗ ⊆ Sing(X ).

How to generalize the results of Gordan-Noether-Franchetta for
N = 4?



The Perazzo map of hypersurfaces with vanishing hessian

Let X = V (f ) ⊂ PN be a reduced hypersurface with vanishing
hessian.

∇f : PN 99K PN polar map, Z = ∇f (PN) ( (PN)∗.

PX := G∗Z ◦ ∇f : PN 99K G(codim(Z )− 1,N)

p 7→ (T∇f (p)Z )∗ = Sing(Qp)

is the Perazzo map of X .

WX = PX (PN) ⊂ G(codim(Z )−1,N) is the Perazzo image of X ;

µ = dim W .

If X = V (f ) ⊂ PN is not a cone, then µ ≥ 1.



X = V (f ) ⊂ PN cubic hypersurface

r ∈ PN , Hr :
N∑
i=0

∂f

∂xi
(r)xi = 0 polar hyperplane of r

s ∈ PN , Qs :
N∑

i ,j=0

∂2f

∂xi∂xj
(s)xixj = 0 polar hyperquadric of s

Reciprocity Law of Polarity : r ∈ Hs ⇐⇒ s ∈ Qr .

EXAMPLE : X = S(1, 2)∗ ⊂ P4, Sing(X ) = P2.

s ∈ Sing(X ) =⇒ Hs = P4

=⇒ Sing(X ) = P2 ⊆ Qr , r ∈ P4 general =⇒ Qr cone, r ∈ P4 general

=⇒ det(Qr ) = hessX (r) = 0, r ∈ P4 general =⇒ hessX ≡ 0.



Perazzo map of cubic hypersurfaces

Theorem

Let X = V (f ) ⊂ PN be a cubic hypersurface with vanishing
hessian. Let w = [(TΦX (p)Z )∗] ∈WX ⊂ G(α,N) and

r ∈ (TΦX (p)Z )∗, p ∈ PN general points. Then:

P−1
X (w) =

⋂
r∈(TΦX (p)Z)∗

Sing(Qr ) = PN−µ
w .

codim(Z ) = 1⇒ P−1
X (r) = PN−µ = Sing(Qr ) = Tr Sing(X ) ⊃ TrZ ∗,

with r ∈ Z ∗ general.
The general fiber of the Perazzo map of a CUBIC
Hypersurface foliates PN with linear spaces TANGENT to Z ∗



Congruence of the fibers of the Perazzo map

The fibers of the Perazzo map form a congruence of order one
of linear spaces, that is if :

Θ ⊂ G(N − µ,N), dim(Θ) = µ, π : U → Θ

the restriction of the universal family, then the tautological map

p : U → PN

is birational and the PN−µ’s of the family foliate PN .



Special Perazzo Cubic Hypersurfaces

The easiest examples of congruences of linear spaces of dimension
β is given by the family of linear spaces of dimension β + 1 passing
through a fixed linear space L = Pβ ⊂ PN .
The previous examples motivate the following:

Definition

An irreducible cubic hypersurface X ⊂ PN with vanishing
hessian, not a cone, will be called a Special Perazzo Cubic
Hypersurface if the general fibers of its Perazzo map form a
congruence of linear spaces of dimension N − µ passing through
a fixed PN−µ−1.



Perazzo Cubic Hypersurfaces

Example

σ ≥ 2, σ ∈ N.

f (x) =
σ∑

i=0

xiC
i (xN−σ+1, ..., xN)+D(xσ+1, ..., xN) ∈ C[x0, . . . , xN ]3,

C i (xN−σ+1, ..., xN) ∈ C[x0, . . . , xN ]2,

D(xσ+1, ..., xN) ∈ C[x0, . . . , xN ]3.

Then the associated hypersurface X = V (f ) ⊂ PN is called a
Perazzo Cubic Hypersurface

1 h(f ) ≡ 0;

2 X = V (f ) is not a cone for general Ci ’s and D.



Special Cubic Hypersurface=Perazzo Hypersurface

Proposition

Let X ⊂ PN be a cubic hypersurface with vanishing hessian, not a
cone. Then

X Special Perazzo ⇐⇒ X Perazzo



Fundamental Inequality for Cubics with vanishing hessian

Theorem

Let X = V (f ) ⊂ PN be a cubic hypersurface with vanishing
hessian, not a cone, with codim(Z ) = 1. Then:

dim(Z ∗) ≤ N − 1

2
.



Classification of Cubic Hypersurfaces with vanishing
hessian for N ≤ 6

Theorem (Gondim, —–;20??)

Let X = V (f ) ⊂ PN ba a cubic hypersurface with vanishing
hessian, not a cone. If N ≤ 6, then

f ∼ Perazzo Cubic Hypersurface.

For N ≥ 7 there exists cubic hypersurfaces with h(f ) ≡ 0, not
cones, which are not projectively equivalent to a Perazzo Cubic
Hypersurface.

These examples are related to an interesting phenomenon:

codim(X ∗,Z ) > 1 ⇐⇒ rk(f )(H(f )) < rk(H(f )).



Examples with codim(X ∗,Z ) > 1, codim(Z ) = 1

1 Let R = SW ⊂ P
3n
2

+2, n = 4, 8, 16, be the secant variety of a

Severi varieties W n ⊂ P
3n
2

+2;

2 p ∈ R be a smooth point, X = R ∩ TpR = V (f ) ⊂ P
3n
2

+1 is a
cubic hypersurface;

3

codim(Z ) = 1, codim(X ∗,Z ) = n + 2;

4

⇒ rk(HessX ) =
3n

2
+ 1, rk(f )(HessX ) = n + 2.

5 NOT PERAZZO HYPERSURFACES



codim(Z ) and codim(X ∗,Z ) arbitrary large as a function
of the degree

(——, A. SIMIS; 2014):

M =



x0 x1 · · · xr−2 xr−1 xr
xr+1 xr+2 · · · x2r−1 x2r x2r+1

x2r+2 x2r+3 · · · x3r x3r+1 0

x3r+2 x3r+3 · · · x4r 0 0
...

...
...

xr(r+5)/2−1 xr(r+5)/2 0 · · · 0 0


,

f := det(M), X = V (f ) ⊂ P
r(r+5)

2 , deg(f ) = r + 1.

codim(Z ) =

(
r

2

)
, codim(X ∗,Z ) = r .



Standard artinian graded algebras

Definition

A =
d⊕

i=0

Ai

be an artinian associative and commutative graded K-algebra with
A0 = K and Ad 6= 0. Let

• : Ai × Ad−i → Ad

(α, β) → α • β

be the restriction of the multiplication in A.
We say that A satisfies the Poincarè Duality Property if:

(i) dimK(Ad) = 1;

(ii) • : Ai × Ad−i → Ad ' K is non-degenerate for every
i = 0, . . . , [d2 ].



Definition

The algebra A is said to be standard if

A ' K[x0, . . . , xN ]

I
,

as graded algebras, with I ⊂ K[x0, . . . , xN ] a homogeneous ideal.

Let us remark that this implies
√

I = (x0, . . . , xN) because
(x0, . . . , xN)m ⊆ I for m ≥ d + 1.



Characterization of artinian Gorenstein algebras

Proposition

Let A be a graded artinian K-algebra. Then A satisfies the
Poincarè Duality Property if and only if it is Gorenstein.



Examples

Example

Let

Q = K[
∂

∂x0
, . . . ,

∂

∂xN
]

F (x) ∈ K[x0, . . . , xN ]d .

For
G ∈ Q ⇒ G (F ) ∈ K[x0, . . . , xN ]

AnnQ(F ) = {G ∈ Q : G (F ) = 0} ⊂ Q homogeneous ideal .

A =
Q

AnnQ(F )

is a standard artinian Gorenstein graded K-algebra with Ai = 0 for
i > d and Ad 6= 0.



Characterization of standard Gorenstein algebras

The following is one of the main applications of the Theory of
Inverse Systems of Macaulay:

Theorem

Let

A =
d⊕

i=0

Ai '
K[x0, . . . , xN ]

I

be an artinian standard graded K-algebra. Then

A Gorenstein ⇐⇒ A ' Q

AnnQ(F )

for some F ∈ K[x0, . . . , xN ]d

AnnQ(F )1 = 0 ⇐⇒ ∂F

∂x0
, . . . ,

∂F

∂xN
are linearly independent.



Suppose
AnnQ(F )1 = 0

A =
Q

AnnQ(F )
, L = a0x0 + . . .+ aNxN ∈ A1

•Ld−2 : A1 → Ad−1

corresponds to

φL : A1 × A1 → K symmetric bilinear form by Poincarè Duality

matrix of φL w. resp. to basis {x0, . . . , xN} = Hess(F )(a0, . . . , aN)

•Ld−1 isomorphism ⇐⇒ hess(F )(a0, . . . , aN) 6= 0



Thus

•Ld−1 isomorphism for L ∈ A1 general ⇐⇒ hess(F ) 6= 0

Hence homogeneous polynomial whose derivates are linearly
dependent but algebraically dependent are such that •Ld−1 is not
an isomorphism for any L ∈ A1.
This should be compared with the following fundamental result.



Hard Lefschetz Theorem

The following fundamental result of S. Lefschetz is known as the
Hard Lefschetz Theorem.

Theorem

Let X ⊂ PN
C be a smooth irreducible complex projective variety of

dimension n ≥ 1 and let [H] ∈ H2(X ) be the class of a hyperplane
section. Then ∀q = 1, . . . , n

•[H]q : Hn−q(X ) → Hn+q(X )

is an isomorphism.

In particular
•[H]n−2 : H2(X )→ H2n−2(X )

is an isomorphism and
n⊕

i=0

H2i (X )

is a Gorenstein C–algebra by Poincarè Duality Theorem.



Corollary

Let notation be as above. Then:

•[H]k : H i (X ) → H i+2k(X ) (1)

is injective for i ≤ n − k and surjective for i ≥ n − k.

Proof.

For i ≤ n − k H i (X )
•[H]k−→ H i+2k(X )

•[H]n−k−i

−→ H2n−i (X )

is an isomorphism by Hard Lefschetz Theorem so that the first
map is injective.

For i ≥ n − k H2n−i−2k(X )
•[H]i−n+k

−→ H i (X )
•[H]k−→ H i+2k(X ).

is an isomorphism by Hard Lefschetz Theorem so that the second
map is surjective.



Definition of Strong Lefschetz Properties

Definition

A =
⊕d

i=0 Ai artinian associative and commutative graded
K-algebra with Ad 6= 0.
A has the Strong Lefschetz Property, briefly SLP, if ∃L ∈ A1:

•Lk : Ai → Ai+k

is of maximal rank, that is injective or surjective, ∀ 0 ≤ i ≤ d and
∀ 0 ≤ k ≤ d − k .
A has the Strong Lefschetz Property in the narrow sense if
∃L ∈ A1 such that the multiplication map

•Ld−2i : Ai → Ad−i

is an isomorphism ∀ i = 0, . . . , [d2 ].



Polynomials having linearly independent partial derivatives but
vanishing hessian (or having vanishing hessians of higher order)
naturally produces counterexamples to the previous conditions.

The techniques and ideas behind the construction and
classification of polynomials with vanishing hessian but depending
on all the variables modulo linear change of coordinates, allowed
recently Rodrigo Gondim to produce examples of homogeneous
polynomials of any degree d ≥ 3 whose associated artinian
Gorenstein K-algebras violate the Strong Lefschetz Property at the
desired i with 1 ≤ i ≤ [d2 ].


