The Sarkisov Program for Mori fibred Calabi–Yau pairs

Anne-Sophie Kaloghiros Brunel University London

Grifga Colloquium, 16 April 2015

Birational maps of \mathbb{P}^2

Second half of 19th century: developments of a general theory of birational maps of \mathbb{P}^2 -Cremona, Enriques, Noether, de Jonquières, Castelnuovo..

 $\operatorname{Cr}_2 = \operatorname{Bir} \mathbb{P}^2 = \left\{ f \colon \mathbb{C}^2 \dashrightarrow \mathbb{C}^2 \text{ rational map with rational inverse} \right\}$

Birational maps of \mathbb{P}^2

Second half of 19th century: developments of a general theory of birational maps of \mathbb{P}^2 -Cremona, Enriques, Noether, de Jonquières, Castelnuovo..

$$\operatorname{Cr}_2 = \operatorname{Bir} \mathbb{P}^2 = \left\{ f \colon \mathbb{C}^2 \dashrightarrow \mathbb{C}^2 \text{ rational map with rational inverse} \right\}$$

Theorem (Noether–Castelnuovo)

 Cr_2 is generated by $\operatorname{PGl}_3(\operatorname{\mathbb{C}})$ and a standard quadratic transformation

$$C \colon (x,y) \dashrightarrow \left(\frac{1}{x}, \frac{1}{y}\right)$$

Possible generalisations of this statement?

Birational maps of \mathbb{P}^2

Possible generalisations of this statement?

- to higher dimensions:
 - Study $\operatorname{Cr}_n = \operatorname{Bir} \mathbb{P}^n$ for $n \geq 3$
 - So far, very little– no meaningful way to probe even Cr_3

Birational maps of \mathbb{P}^2

Possible generalisations of this statement?

- to higher dimensions:
 - Study $\operatorname{Cr}_n = \operatorname{Bir} \mathbb{P}^n$ for $n \geq 3$
 - So far, very little– no meaningful way to probe even Cr_3
- to open varieties:
 - consider proper birational maps between open algebraic surfaces

$$\varphi \colon U \dashrightarrow V$$

with $U, V \subset \mathbb{P}^2$ or U, V subsets of rational surfaces

- Iitaka's philospohy: formalism of pairs

Symplectic transformations of the plane

Subgroup of birational maps of \mathbb{P}^2 preserving standard volume form of $(\mathbb{C}^*)^2$

$$\mathrm{SCr}_2 = \left\{ f \colon \mathbb{C}^2 \dashrightarrow \mathbb{C}^2, f \in \mathrm{Cr}_2 \, | \, f^* \Big(\frac{dx}{x} \wedge \frac{dy}{y} \Big) = \frac{dx}{x} \wedge \frac{dy}{y} \right\}$$

Symplectic transformations of the plane

Subgroup of birational maps of \mathbb{P}^2 preserving standard volume form of $(\mathbb{C}^*)^2$

$$\mathrm{SCr}_2 = \left\{ f \colon \mathbb{C}^2 \dashrightarrow \mathbb{C}^2, f \in \mathrm{Cr}_2 \mid f^*\left(\frac{dx}{x} \land \frac{dy}{y}\right) = \frac{dx}{x} \land \frac{dy}{y} \right\}$$

Theorem (Usnich–Blanc)

 SCr_2 is generated by $(\mathbb{C}^*)^2$, $\mathrm{Sl}_2(\mathbb{Z})$ and the birational map

$$P \colon (x,y) \dashrightarrow \left(y, \frac{1+y}{x}\right)$$

Symplectic Cremona group

Possible generalisations? Subgroup of Cr_n of maps preserving standard volume form of $(\mathbb{C}^*)^n$

$$\operatorname{SCr}_{n} = \left\{ f \colon \mathbb{C}^{n} \dashrightarrow \mathbb{C}^{n}, f \in \operatorname{Cr}_{n} | f^{*}\left(\frac{dx_{1}}{x_{1}} \land \dots \land \frac{dx_{n}}{x_{n}}\right) = \frac{dx_{1}}{x_{1}} \land \dots \land \frac{dx_{n}}{x_{n}} \right\}$$

Symplectic Cremona group

Possible generalisations? Subgroup of Cr_n of maps preserving standard volume form of $(\mathbb{C}^*)^n$

$$\operatorname{SCr}_{n} = \left\{ f \colon \mathbb{C}^{n} \dashrightarrow \mathbb{C}^{n}, f \in \operatorname{Cr}_{n} | f^{*}\left(\frac{dx_{1}}{x_{1}} \land \dots \land \frac{dx_{n}}{x_{n}}\right) = \frac{dx_{1}}{x_{1}} \land \dots \land \frac{dx_{n}}{x_{n}} \right\}$$

Examples of symplectic Cremona transformations

(i) $(\mathbb{C}^*)^n$, $\operatorname{Sl}_n(\mathbb{Z})$ are subgroups of SCr_n

Symplectic Cremona group

Possible generalisations? Subgroup of Cr_n of maps preserving standard volume form of $(\mathbb{C}^*)^n$

$$\operatorname{SCr}_{n} = \left\{ f \colon \mathbb{C}^{n} \dashrightarrow \mathbb{C}^{n}, f \in \operatorname{Cr}_{n} | f^{*}\left(\frac{dx_{1}}{x_{1}} \land \dots \land \frac{dx_{n}}{x_{n}}\right) = \frac{dx_{1}}{x_{1}} \land \dots \land \frac{dx_{n}}{x_{n}} \right\}$$

Examples of symplectic Cremona transformations

- (i) $(\mathbb{C}^*)^n$, $\operatorname{Sl}_n(\mathbb{Z})$ are subgroups of SCr_n
- (ii) (mutations) Let $\mathbb{T} = \operatorname{Spec} \mathbb{C}[N]$ be an *n*-dimensional torus, $h \in M = \operatorname{Hom}(N, \mathbb{Z})$, and $f \in \mathbb{C}[h^{\perp}] \subset \mathbb{C}[N]$, then

$$\phi \colon x^{\gamma} \mapsto x^{\gamma} \cdot f^{< h, \gamma >}$$

is volume preserving.

Another generalisation of results on Cr_2 and SCr_2

Generalisation of Noether-Castelnuovo's theorem on Cr₂:

Theorem (Sarkisov, Reid, Corti, Hacon-McKernan)

A birational map between Mori fibre spaces is a composition of Sarkisov links.

Another generalisation of results on Cr_2 and SCr_2

Generalisation of Noether-Castelnuovo's theorem on Cr₂:

Theorem (Sarkisov, Reid, Corti, Hacon-McKernan)

A birational map between Mori fibre spaces is a composition of Sarkisov links.

Generalisation of Usnich-Blanc's theorem on SCr₂:

Theorem (Corti-K.)

A volume preserving birational map between Mori fibred Calabi–Yau pairs is a composition of volume preserving Sarkisov links.

Proof of Noether-Castelnuovo:

(Noether) if $\varphi \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ not biregular, then $\exists \mathbb{P}^2 \xrightarrow{c} \mathbb{P}^2$ quadratic with $\deg(c \circ \varphi) < \deg \varphi$

Proof of Noether-Castelnuovo:

(Noether) if $\varphi \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ not biregular, then $\exists \mathbb{P}^2 \stackrel{c}{\dashrightarrow} \mathbb{P}^2$ quadratic with $\deg(c \circ \varphi) < \deg \varphi$ (Castelnuovo) proof relies on:

Theorem

Any birational map $\varphi \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ is a chain of the following elementary maps

A Mori fibre space (Mfs) X/S

- a \mathbb{Q} -factorial terminal variety X
- and a fibration $f: X \to S$ such that $f_*\mathcal{O}_X = \mathcal{O}_S$, $-K_X$ is f-ample, and $\rho(X) \rho(S) = 1$

A Mori fibre space (Mfs) X/S

- a \mathbb{Q} -factorial terminal variety X
- and a fibration $f: X \to S$ such that $f_*\mathcal{O}_X = \mathcal{O}_S$, $-K_X$ is f-ample, and $\rho(X) \rho(S) = 1$

Classical Minimal Model Program (MMP): if Z is a uniruled projective manifold, the MMP on Z terminates with a Mfs

A Mori fibre space (Mfs) X/S

- a \mathbb{Q} -factorial terminal variety X
- and a fibration $f: X \to S$ such that $f_*\mathcal{O}_X = \mathcal{O}_S$, $-K_X$ is f-ample, and $\rho(X) \rho(S) = 1$

Classical Minimal Model Program (MMP): if Z is a uniruled projective manifold, the MMP on Z terminates with a Mfs

Sarkisov program (Hacon-McKernan)

A birational map between Mfs X/S and X'/S' is a composition of Sarkisov links

A Mori fibre space (Mfs) X/S

- a \mathbb{Q} -factorial terminal variety X
- and a fibration $f: X \to S$ such that $f_*\mathcal{O}_X = \mathcal{O}_S$, $-K_X$ is f-ample, and $\rho(X) \rho(S) = 1$

Classical Minimal Model Program (MMP): if Z is a uniruled projective manifold, the MMP on Z terminates with a Mfs

Sarkisov program (Hacon-McKernan)

A birational map between Mfs X/S and X^\prime/S^\prime is a composition of Sarkisov links

Structure theorem: identifies "generators" of $\operatorname{Bir} X$ for any Mfs X

Sarkisov link $\varphi \colon X/S \dashrightarrow X'/S'$: a commutative diagram

Type I inverse Type III

 $Z \to X$ divisorial contraction; $Z \dashrightarrow X'$ sequence of flips, flops and inverse flips

Sarkisov link $\varphi \colon X/S \dashrightarrow X'/S'$: a commutative diagram

 $Z \to X$ divisorial contraction; $Z \dashrightarrow X'$ sequence of flips, flops and inverse flips

 $Z \to X$ and $Z' \to X'$ divisorial contractions; $Z \dashrightarrow Z'$ sequence of flips, flops and inverse flips

X'

Sarkisov link $\varphi \colon X/S \dashrightarrow X'/S'$: a commutative diagram

sequence of flips, flops and inverse flips

All intermediate varieties terminal Q-factorial

inverse flips

- A Calabi–Yau pair $(\boldsymbol{X},\boldsymbol{D})$ consists of
- a normal variety \boldsymbol{X}
- a reduced effective Weil divisor D with $K_X+D\sim 0$

- A Calabi–Yau pair $(\boldsymbol{X},\boldsymbol{D})$ consists of
- a normal variety \boldsymbol{X}
- a reduced effective Weil divisor D with $K_X+D\sim 0$
- A Calabi-Yau pair (X, D) has (t, dlt) (resp. (t, lc)) singularities if
- X has terminal singularities
- the pair (X, D) is dlt (resp. lc)

- A Calabi–Yau pair (X, D) consists of
- a normal variety \boldsymbol{X}
- a reduced effective Weil divisor D with $K_X + D \sim 0$
- A Calabi-Yau pair (X, D) has (t, dlt) (resp. (t, lc)) singularities if
- X has terminal singularities
- the pair (X, D) is dlt (resp. lc)
- A Mori fibred Calabi-Yau pair (X/S, D) is a (t, lc) CY pair with X/S a Mfs

- A Calabi–Yau pair (X, D) consists of
- a normal variety \boldsymbol{X}
- a reduced effective Weil divisor D with $K_X+D\sim 0$
- A Calabi-Yau pair (X, D) has (t, dlt) (resp. (t, lc)) singularities if
- X has terminal singularities
- the pair (X, D) is dlt (resp. lc)
- A Mori fibred Calabi-Yau pair (X/S, D) is a (t, lc) CY pair with X/S a Mfs

A Mori fibred CY pair (X/S, D) is the end product of a classical MMP and the end product of a log-MMP for (X, D)

Mori fibred rational Calabi-Yau surface pairs

Mori fibred rational Calabi-Yau surface pairs 1. (\mathbb{P}^2, D) where D is

Mori fibred rational Calabi-Yau surface pairs

- 1. (\mathbb{P}^2, D) where D is
 - a smooth elliptic curve
 - L + C a line and a conic
 - $L_1 + L_2 + L_3 = \{x_0 x_1 x_2 = 0\}$ union of 3 lines
 - a cubic curve with a node

Mori fibred rational Calabi-Yau surface pairs

- 1. (\mathbb{P}^2, D) where D is
 - a smooth elliptic curve
 - L + C a line and a conic
 - $L_1 + L_2 + L_3 = \{x_0 x_1 x_2 = 0\}$ union of 3 lines
 - a cubic curve with a node

2. (\mathbb{F}_N, D) where D is

Mori fibred rational Calabi-Yau surface pairs

- 1. (\mathbb{P}^2, D) where D is
 - a smooth elliptic curve
 - L + C a line and a conic
 - $L_1 + L_2 + L_3 = \{x_0 x_1 x_2 = 0\}$ union of 3 lines
 - a cubic curve with a node

2. (\mathbb{F}_N, D) where D is

- $C_1 + C_2 + C_3 + C_4$, $(C_1, C_2, C_3, C_4) = (\sigma, f, \sigma + kf, f)$
- $C_1 + C_2 + C_3$, $(C_1, C_2, C_3) = (\sigma, f, \sigma + (1+k)f)$
- $C_1 + C_2$, $(C_1, C_2) = (\sigma, f, \sigma + (2+k)f, f)$

Mori fibred rational Calabi-Yau surface pairs

- 1. (\mathbb{P}^2, D) where D is
 - a smooth elliptic curve
 - L + C a line and a conic
 - $L_1 + L_2 + L_3 = \{x_0 x_1 x_2 = 0\}$ union of 3 lines
 - a cubic curve with a node

2. (\mathbb{F}_N, D) where D is

- $C_1 + C_2 + C_3 + C_4$, $(C_1, C_2, C_3, C_4) = (\sigma, f, \sigma + kf, f)$
- $C_1 + C_2 + C_3$, $(C_1, C_2, C_3) = (\sigma, f, \sigma + (1+k)f)$
- $C_1 + C_2$, $(C_1, C_2) = (\sigma, f, \sigma + (2+k)f, f)$
- 3. a few extra cases (\mathbb{F}_N, D) where $N \leq 2$ and σ not a component of D

4. (S, D) a Mf CY surface pair and $\sigma: \tilde{S} \to S$ the blowup of P_1, \dots, P_k distinct points on $D - \operatorname{Sing}(D)$. The pair $(\tilde{S}, \sigma_*^{-1}D)$ is a (t,dlt) CY pair if (S, D) is dlt, and a (t, lc) pair otherwise

- 4. (S, D) a Mf CY surface pair and $\sigma: \tilde{S} \to S$ the blowup of P_1, \dots, P_k distinct points on $D - \operatorname{Sing}(D)$. The pair $(\tilde{S}, \sigma_*^{-1}D)$ is a (t,dlt) CY pair if (S, D) is dlt, and a (t, lc) pair otherwise
- 5. (S, D) be a Mf CY surface pair and $\sigma: \tilde{S} \to S$ the blowup of P_1, \dots, P_k distinct points on $\operatorname{Sing}(D)$. The pair (\tilde{S}, σ^*D) is a (t, lc) CY pair

- 4. (S, D) a Mf CY surface pair and $\sigma: \tilde{S} \to S$ the blowup of P_1, \dots, P_k distinct points on $D - \operatorname{Sing}(D)$. The pair $(\tilde{S}, \sigma_*^{-1}D)$ is a (t,dlt) CY pair if (S, D) is dlt, and a (t, lc) pair otherwise
- 5. (S, D) be a Mf CY surface pair and $\sigma \colon \tilde{S} \to S$ the blowup of P_1, \dots, P_k distinct points on $\operatorname{Sing}(D)$. The pair (\tilde{S}, σ^*D) is a (t, lc) CY pair
- 6. X a nonsingular toric variety, $D = \sum D_i$ the sum of the T-invariant divisors; then (X, D) is a (t, dlt) CY pair

- 4. (S, D) a Mf CY surface pair and $\sigma: \tilde{S} \to S$ the blowup of P_1, \dots, P_k distinct points on $D - \operatorname{Sing}(D)$. The pair $(\tilde{S}, \sigma_*^{-1}D)$ is a (t,dlt) CY pair if (S, D) is dlt, and a (t, lc) pair otherwise
- 5. (S, D) be a Mf CY surface pair and $\sigma \colon \tilde{S} \to S$ the blowup of P_1, \dots, P_k distinct points on $\operatorname{Sing}(D)$. The pair (\tilde{S}, σ^*D) is a (t, lc) CY pair
- 6. X a nonsingular toric variety, $D = \sum D_i$ the sum of the T-invariant divisors; then (X, D) is a (t, dlt) CY pair
- 7. X a smooth weak Fano 3-fold and $D \in |-K_X|$ a general anticanonical section; then (X, D) is a (t, dlt) CY pair

Let (X, D) and (X', D') be CY pairs. A birational map $\varphi \colon X \dashrightarrow X'$ is volume preserving if there exists a common log resolution

such that $p^*(K_X + D) = q^*(K_{X'} + D')$.

Let (X, D) and (X', D') be CY pairs. A birational map $\varphi \colon X \dashrightarrow X'$ is volume preserving if there exists a common log resolution

such that $p^*(K_X + D) = q^*(K_{X'} + D')$.

Essential: this is an equality and not just a linear equivalence

Let (X, D) and (X', D') be CY pairs. A birational map $\varphi \colon X \dashrightarrow X'$ is volume preserving if there exists a common log resolution

such that $p^*(K_X + D) = q^*(K_{X'} + D')$.

Essential: this is an equality and not just a linear equivalence

Equivalently: φ is volume preserving if for all geometric valuations E

$$a(E, K_X + D) = a(E, K_{X'} + D')$$

Let (X, D) and (X', D') be CY pairs. A birational map $\varphi \colon X \dashrightarrow X'$ is volume preserving if there exists a common log resolution

such that $p^*(K_X + D) = q^*(K_{X'} + D')$.

Essential: this is an equality and not just a linear equivalence

Equivalently: φ is volume preserving if for all geometric valuations E

$$a(E, K_X + D) = a(E, K_{X'} + D')$$

Theorem (CK)

Let (X, D) and (X', D') be lc CY pairs and $\varphi \colon X \dashrightarrow X'$ a volume preserving birational map. Then there are \mathbb{Q} -factorial (t, dlt) CY pairs (Y, D_Y) , $(Y', D_{Y'})$ and a commutative diagram of birational maps:

where:

Theorem (CK)

Let (X, D) and (X', D') be lc CY pairs and $\varphi \colon X \dashrightarrow X'$ a volume preserving birational map. Then there are \mathbb{Q} -factorial (t, dlt) CY pairs (Y, D_Y) , $(Y', D_{Y'})$ and a commutative diagram of birational maps:

$$\begin{array}{ccc} Y - \frac{\chi}{-} > Y' \\ y \\ \psi \\ X - \frac{\varphi}{-} > X' \end{array}$$

where:

(1) the morphisms $g: Y \to X, g': Y' \to X'$ are volume preserving;

Theorem (CK)

Let (X, D) and (X', D') be lc CY pairs and $\varphi \colon X \dashrightarrow X'$ a volume preserving birational map. Then there are \mathbb{Q} -factorial (t, dlt) CY pairs (Y, D_Y) , $(Y', D_{Y'})$ and a commutative diagram of birational maps:

$$\begin{array}{ccc} Y - \frac{\chi}{-} > Y' \\ g \\ \psi \\ X - \frac{\varphi}{-} > X' \end{array}$$

where:

- (1) the morphisms $g \colon Y \to X, g' \colon Y' \to X'$ are volume preserving;
- (2) $\chi: Y \dashrightarrow Y'$ is a volume preserving isomorphism in codimension 1 which is a composition of volume preserving flips, flops and inverse flips between terminal Q-factorial varieties

Main subtlety: Ensure that the decomposition of χ only involves varieties with terminal singularities

Main subtlety: Ensure that the decomposition of χ only involves varieties with terminal singularities

Want to run two different MMPs at the same time

Main subtlety: Ensure that the decomposition of χ only involves varieties with terminal singularities

Want to run two different MMPs at the same time

- limiting case of the Sarkisov program for pairs
- Sarkisov program for varieties

Main subtlety: Ensure that the decomposition of χ only involves varieties with terminal singularities

Want to run two different MMPs at the same time

- limiting case of the Sarkisov program for pairs
- Sarkisov program for varieties

Working with pairs usually spoils the singularities of the underlying varieties

Working with varieties does not preserve singularities of pairs

A non-example.. or how it could go wrong!

Let $E = \mathbb{P}^1 \times \mathbb{P}^1$ and W the total space of the vector bundle $\mathcal{O}_E(-1, -2)$.

Let $D_W \subset W$ be a smooth surface such that $D_W \cap E$ is a ruling in E and a (-2)-curve in D_W .

A non-example.. or how it could go wrong!

Let $E = \mathbb{P}^1 \times \mathbb{P}^1$ and W the total space of the vector bundle $\mathcal{O}_E(-1, -2)$.

Let $D_W \subset W$ be a smooth surface such that $D_W \cap E$ is a ruling in E and a (-2)-curve in D_W .

Let $f: W \to Y$ be the contraction of E along the first ruling and $f': W \to Y'$ the contraction along the second ruling.

A non-example.. or how it could go wrong!

Let $E = \mathbb{P}^1 \times \mathbb{P}^1$ and W the total space of the vector bundle $\mathcal{O}_E(-1, -2)$.

Let $D_W \subset W$ be a smooth surface such that $D_W \cap E$ is a ruling in E and a (-2)-curve in D_W .

Let $f: W \to Y$ be the contraction of E along the first ruling and $f': W \to Y'$ the contraction along the second ruling.

Then (Y, D) and (Y', D') are both dlt, Y' is terminal, Y is canonical but not terminal, and the map $Y \dashrightarrow Y'$ is volume preserving.

Factorisation of volume preserving maps of lc CY pairs Sketch proof

Step 1. Take a common resolution

Factorisation of volume preserving maps of lc CY pairs Sketch proof

Step 1. Take a common resolution

$$K_W + D_W = f^*(K_X + D) + F$$
$$= f'^*(K_{X'} + D') + F$$

for
$$D_W = \sum_{a_E=-1} E, F = \sum_{a_E>0} a_E E$$

Factorisation of volume preserving maps of lc CY pairs Sketch proof

Step 1. Take a common resolution

Step 2. $(Y, D_Y)/(Y', D_{Y'})$ =end product of the $(K_W + D_W)$ -MMP over X/X'Crucial: $W \dashrightarrow Y$ and $W \dashrightarrow Y'$ isomorphisms near nklt loci

Factorisation of volume preserving maps of lc CY pairs Sketch proof

Step 1. Take a common resolution

Step 2. $(Y, D_Y)/(Y', D_{Y'})$ =end product of the $(K_W + D_W)$ -MMP over X/X'Crucial: $W \dashrightarrow Y$ and $W \dashrightarrow Y'$ isomorphisms near nklt loci

Step 3. Induced $Y \xrightarrow{\chi} Y'$ isomorphism in codimension 1 For suitable Θ (perturbation of D_Y), (Y, Θ) is klt and χ is a $(K_Y + \Theta)$ -MMP χ is a composition of $(K_Y + \Theta)$ -flips that are also (K + D)-flops and all intermediate varieties are terminal

Setup:

- (i) Y and Y' have \mathbb{Q} -factorial terminal singularities and $g: Y \to X$ and $g': Y \to X'$ are birational morphisms
- (ii) $\chi \colon Y \dashrightarrow Y'$ is the composition of flips, flops and inverse flips between terminal Q-factorial varieties
- (iii) $p: X \to S$ and $p': X' \to S'$ are Mfs

(Hacon–McKernan) Two Mfs that are end products of the classical MMP on the same variety are connected by a chain of Sarkisov links

(Hacon–McKernan) Two Mfs that are end products of the classical MMP on the same variety are connected by a chain of Sarkisov links

Let $\chi = \chi_N \circ \cdots \circ \chi_0$ be the decomposition of χ into elementary flips, flops and inverse flips

 $\chi_i \colon Y_i \dashrightarrow Y_{i+1}$

(Hacon–McKernan) Two Mfs that are end products of the classical MMP on the same variety are connected by a chain of Sarkisov links

Let $\chi = \chi_N \circ \cdots \circ \chi_0$ be the decomposition of χ into elementary flips, flops and inverse flips

$$\chi_i \colon Y_i \dashrightarrow Y_{i+1}$$

Let $f_i: Y_i \dashrightarrow X_i/S_i$ a classical MMP, then $(X_i/S_i, f_i * D_i)$ is a Mf CY pair

(Hacon–McKernan) Two Mfs that are end products of the classical MMP on the same variety are connected by a chain of Sarkisov links

Let $\chi = \chi_N \circ \cdots \circ \chi_0$ be the decomposition of χ into elementary flips, flops and inverse flips

$$\chi_i \colon Y_i \dashrightarrow Y_{i+1}$$

Let $f_i: Y_i \dashrightarrow X_i/S_i$ a classical MMP, then $(X_i/S_i, f_{i*}D_i)$ is a Mf CY pair

Depending on whether χ_i is a flip, flop or antiflip, X_i/S_i and X_{i+1}/S_{i+1} are both end products of the MMP on Y_i or on Y_{i+1}