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Birational maps of P2

Second half of 19th century: developments of a general theory of birational
maps of P2–Cremona, Enriques, Noether, de Jonquières, Castelnuovo..

Cr2 = BirP2 =
{
f : C2 99K C2 rational map with rational inverse

}

Theorem (Noether–Castelnuovo)

Cr2 is generated by PGl3(C) and a standard quadratic transformation

C : (x, y) 99K
( 1

x
,

1

y

)
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Birational maps of P2

Possible generalisations of this statement?

• to higher dimensions:

- Study Crn = BirPn for n ≥ 3
- So far, very little– no meaningful way to probe even Cr3

• to open varieties:

- consider proper birational maps between open algebraic surfaces

ϕ : U 99K V

with U, V ⊂ P2 or U, V subsets of rational surfaces
- Iitaka’s philospohy: formalism of pairs
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Symplectic transformations of the plane

Subgroup of birational maps of P2 preserving standard volume form of (C∗)2

SCr2 =
{
f : C2 99K C2, f ∈ Cr2 |f∗

(dx
x
∧ dy
y

)
=
dx

x
∧ dy
y

}

Theorem (Usnich–Blanc)

SCr2 is generated by (C∗)2, Sl2(Z) and the birational map

P : (x, y) 99K
(
y,

1 + y

x

)
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Symplectic Cremona group

Possible generalisations?
Subgroup of Crn of maps preserving standard volume form of (C∗)n

SCrn =

{
f : Cn 99K Cn, f ∈ Crn |f∗

(
dx1
x1
∧ · · · ∧ dxn

xn

)
=
dx1
x1
∧ · · · ∧ dxn

xn

}

Examples of symplectic Cremona transformations

(i) (C∗)n, Sln(Z) are subgroups of SCrn

(ii) (mutations) Let T = SpecC[N ] be an n-dimensional torus,
h ∈M = Hom(N,Z), and f ∈ C[h⊥] ⊂ C[N ], then

φ : xγ 7→ xγ · f<h,γ>

is volume preserving.
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Another generalisation of results on Cr2 and SCr2

Generalisation of Noether-Castelnuovo’s theorem on Cr2:

Theorem (Sarkisov, Reid, Corti, Hacon-McKernan)

A birational map between Mori fibre spaces is a composition of Sarkisov links.

Generalisation of Usnich-Blanc’s theorem on SCr2:

Theorem (Corti–K.)

A volume preserving birational map between Mori fibred Calabi–Yau pairs is a
composition of volume preserving Sarkisov links.
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Sarkisov program

Proof of Noether-Castelnuovo:
(Noether) if ϕ : P2 99K P2 not biregular, then ∃P2 c

99K P2 quadratic with
deg(c ◦ ϕ) < degϕ

(Castelnuovo) proof relies on:

Theorem

Any birational map ϕ : P2 99K P2 is a chain of the following elementary maps

P2

��

F1

��

εoo

pt P1oo

Type I

Fk

��

// Fk±1

��
P1 P1

Type II

F1

��

ε // P2

��
P1 // pt

Type III

P1×P1 ι

��

P1×P1

��
P1 P1

Type IV
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Sarkisov program

A Mori fibre space (Mfs) X/S

- a Q-factorial terminal variety X

- and a fibration f : X → S such that f∗OX = OS , −KX is f -ample, and
ρ(X)− ρ(S) = 1

Classical Minimal Model Program (MMP): if Z is a uniruled projective
manifold, the MMP on Z terminates with a Mfs

Sarkisov program (Hacon-McKernan)

A birational map between Mfs X/S and X ′/S′ is a composition of Sarkisov
links

Structure theorem: identifies “generators” of BirX for any Mfs X
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Sarkisov program

Sarkisov link ϕ : X/S 99K X ′/S′: a commutative diagram

Type I
inverse Type III

Z

��

// X ′

��
X

��

S′

ww
S

Z → X divisorial
contraction; Z 99K X ′

sequence of flips, flops
and inverse flips

Type II

Z

��

// Z ′

  
X

��

X ′

��
S S′

Z → X and Z ′ → X ′ divisorial
contractions; Z 99K Z ′

sequence of flips, flops and
inverse flips

Type IV

X

��

// X ′

��
S

��

S′

~~
T

X 99K X ′ sequence of

flips, flops and inverse

flips

All intermediate varieties terminal Q-factorial
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Calabi–Yau pairs

A Calabi–Yau pair (X,D) consists of

- a normal variety X

- a reduced effective Weil divisor D with KX +D ∼ 0

A Calabi-Yau pair (X,D) has (t, dlt) (resp. (t, lc)) singularities if

- X has terminal singularities

- the pair (X,D) is dlt (resp. lc)

A Mori fibred Calabi-Yau pair (X/S,D) is a (t, lc) CY pair with X/S a Mfs

A Mori fibred CY pair (X/S,D) is the end product of a classical MMP and
the end product of a log-MMP for (X,D)
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Examples of Calabi-Yau pairs

Mori fibred rational Calabi-Yau surface pairs

1. (P2, D) where D is

- a smooth elliptic curve
- L+ C a line and a conic
- L1 + L2 + L3 = {x0x1x2 = 0} union of 3 lines
- a cubic curve with a node

2. (FN , D) where D is

- C1 + C2 + C3 + C4, (C1, C2, C3, C4) = (σ, f, σ + kf, f)
- C1 + C2 + C3, (C1, C2, C3) = (σ, f, σ + (1 + k)f)
- C1 + C2, (C1, C2) = (σ, f, σ + (2 + k)f, f)

3. a few extra cases (FN , D) where N ≤ 2 and σ not a component of D

11 / 19
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Examples of Calabi-Yau pairs

4. (S,D) a Mf CY surface pair and σ : S̃ → S the blowup of P1, · · · , Pk
distinct points on D − Sing(D). The pair (S̃, σ−1∗ D) is a (t,dlt) CY pair if
(S,D) is dlt, and a (t, lc) pair otherwise

5. (S,D) be a Mf CY surface pair and σ : S̃ → S the blowup of P1, · · · , Pk
distinct points on Sing(D). The pair (S̃, σ∗D) is a (t, lc) CY pair

6. X a nonsingular toric variety, D =
∑
Di the sum of the T -invariant

divisors; then (X,D) is a (t, dlt) CY pair

7. X a smooth weak Fano 3-fold and D ∈ |−KX | a general anticanonical
section; then (X,D) is a (t, dlt) CY pair

12 / 19
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Volume preserving birational maps

Let (X,D) and (X ′, D′) be CY pairs. A birational map ϕ : X 99K X ′ is
volume preserving if there exists a common log resolution

W
p

~~

q

!!
X

ϕ // X ′

such that p∗(KX +D) = q∗(KX′ +D′).

Essential: this is an equality and not just a linear equivalence

Equivalently: ϕ is volume preserving if for all geometric valuations E

a(E,KX +D) = a(E,KX′ +D′)

13 / 19
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Factorisation of volume preserving maps of lc CY pairs

Theorem (CK)

Let (X,D) and (X ′, D′) be lc CY pairs and ϕ : X 99K X ′ a volume preserving
birational map. Then there are Q-factorial (t, dlt) CY pairs (Y,DY ),
(Y ′, DY ′) and a commutative diagram of birational maps:

Y

g

��

χ // Y ′

g′

��
X

ϕ // X ′

where:

(1) the morphisms g : Y → X, g′ : Y ′ → X ′ are volume preserving;

(2) χ : Y 99K Y ′ is a volume preserving isomorphism in codimension 1 which is
a composition of volume preserving flips, flops and inverse flips between
terminal Q-factorial varieties
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(1) the morphisms g : Y → X, g′ : Y ′ → X ′ are volume preserving;

(2) χ : Y 99K Y ′ is a volume preserving isomorphism in codimension 1 which is
a composition of volume preserving flips, flops and inverse flips between
terminal Q-factorial varieties
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Factorisation of volume preserving maps of lc CY pairs

Main subtlety: Ensure that the decomposition of χ only involves varieties with
terminal singularities

Want to run two different MMPs at the same time

- limiting case of the Sarkisov program for pairs

- Sarkisov program for varieties

Working with pairs usually spoils the singularities of the underlying varieties

Working with varieties does not preserve singularities of pairs
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Factorisation of volume preserving maps of lc CY pairs

A non-example.. or how it could go wrong!

Let E = P1×P1 and W the total space of the vector bundle OE(−1,−2).

Let DW ⊂W be a smooth surface such that DW ∩ E is a ruling in E and a
(−2)-curve in DW .

Let f : W → Y be the contraction of E along the first ruling and f ′ : W → Y ′

the contraction along the second ruling.

Then (Y,D) and (Y ′, D′) are both dlt, Y ′ is terminal, Y is canonical but not
terminal, and the map Y 99K Y ′ is volume preserving.
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Factorisation of volume preserving maps of lc CY pairs
Sketch proof

Step 1. Take a common resolution

W
f

~~

f ′

!!
X

ϕ // X ′

KW +DW = f∗(KX +D) + F

= f ′ ∗(KX′ +D′) + F

for DW =
∑
aE=−1E,F =

∑
aE>0 aEE

Step 2. (Y,DY )/(Y ′, DY ′)=end product of the (KW +DW )-MMP over X/X ′

Crucial: W 99K Y and W 99K Y ′ isomorphisms near nklt loci

Step 3. Induced Y
χ

99K Y ′ isomorphism in codimension 1
For suitable Θ (perturbation of DY ), (Y,Θ) is klt and χ is a (KY + Θ)-MMP
χ is a composition of (KY + Θ)-flips that are also (K +D)-flops and all
intermediate varieties are terminal
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Sketch proof of the main theorem

Setup:

Y

g

��

χ // Y ′

g′

��
X

p

��

ϕ // X ′

p′

��
S S′

(i) Y and Y ′ have Q-factorial terminal singularities and g : Y → X and
g′ : Y → X ′ are birational morphisms

(ii) χ : Y 99K Y ′ is the composition of flips, flops and inverse flips between
terminal Q-factorial varieties

(iii) p : X → S and p′ : X ′ → S′ are Mfs

18 / 19



Sketch proof of the main theorem

(Hacon–McKernan) Two Mfs that are end products of the classical MMP on
the same variety are connected by a chain of Sarkisov links

Let χ = χN ◦ · · · ◦ χ0 be the decomposition of χ into elementary flips, flops
and inverse flips

χi : Yi 99K Yi+1

Let fi : Yi 99K Xi/Si a classical MMP, then (Xi/Si, fi ∗Di) is a Mf CY pair

Depending on whether χi is a flip, flop or antiflip, Xi/Si and Xi+1/Si+1 are
both end products of the MMP on Yi or on Yi+1

19 / 19



Sketch proof of the main theorem

(Hacon–McKernan) Two Mfs that are end products of the classical MMP on
the same variety are connected by a chain of Sarkisov links

Let χ = χN ◦ · · · ◦ χ0 be the decomposition of χ into elementary flips, flops
and inverse flips

χi : Yi 99K Yi+1

Let fi : Yi 99K Xi/Si a classical MMP, then (Xi/Si, fi ∗Di) is a Mf CY pair

Depending on whether χi is a flip, flop or antiflip, Xi/Si and Xi+1/Si+1 are
both end products of the MMP on Yi or on Yi+1

19 / 19



Sketch proof of the main theorem

(Hacon–McKernan) Two Mfs that are end products of the classical MMP on
the same variety are connected by a chain of Sarkisov links

Let χ = χN ◦ · · · ◦ χ0 be the decomposition of χ into elementary flips, flops
and inverse flips

χi : Yi 99K Yi+1

Let fi : Yi 99K Xi/Si a classical MMP, then (Xi/Si, fi ∗Di) is a Mf CY pair

Depending on whether χi is a flip, flop or antiflip, Xi/Si and Xi+1/Si+1 are
both end products of the MMP on Yi or on Yi+1

19 / 19



Sketch proof of the main theorem

(Hacon–McKernan) Two Mfs that are end products of the classical MMP on
the same variety are connected by a chain of Sarkisov links

Let χ = χN ◦ · · · ◦ χ0 be the decomposition of χ into elementary flips, flops
and inverse flips

χi : Yi 99K Yi+1

Let fi : Yi 99K Xi/Si a classical MMP, then (Xi/Si, fi ∗Di) is a Mf CY pair

Depending on whether χi is a flip, flop or antiflip, Xi/Si and Xi+1/Si+1 are
both end products of the MMP on Yi or on Yi+1

19 / 19


