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Second half of 19th century: developments of a general theory of birational
maps of P2~Cremona, Enriques, Noether, de Jonquieres, Castelnuovo..

Cry = BirP? = {f: C? --» C? rational map with rational inverse }

Theorem (Noether—Castelnuovo)

Cry is generated by PGl3(C) and a standard quadratic transformation
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Birational maps of P?

Possible generalisations of this statement?
e to higher dimensions:

- Study Cr,, = BirP" for n > 3

- So far, very little- no meaningful way to probe even Crg
e to open varieties:

- consider proper birational maps between open algebraic surfaces
p:U -V

with U,V C P? or U,V subsets of rational surfaces
- litaka’s philospohy: formalism of pairs
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Symplectic transformations of the plane

Subgroup of birational maps of P? preserving standard volume form of (C*)?

SCr; = {f: € --+<c2,fecr2|f*(d§/\%) :df/\%}

Theorem (Usnich-Blanc)
SCr, is generated by (C*)2, Sly(Z) and the birational map

B s (=)
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Symplectic Cremona group

Possible generalisations?
Subgroup of Cr,, of maps preserving standard volume form of (C*)"

T Tn

SCrnz{f: C" - C", f € Cr, |f* (?A...Adﬁ> _%A...Ad%}
1
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Symplectic Cremona group

Possible generalisations?
Subgroup of Cr,, of maps preserving standard volume form of (C*)"

SCrn={f: C" --»C", f € Crp | f7 (%Am/\dﬂ> —@AmAdx”}
1

T T Tn
Examples of symplectic Cremona transformations

(i) (C*)", S1,,(Z) are subgroups of SCr,,
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Symplectic Cremona group

Possible generalisations?
Subgroup of Cr,, of maps preserving standard volume form of (C*)"

SCrn={f: C" --»C", f € Crp | f7 (%Am/\dﬂ> —@AmAdx”}
1

T ) @ Tn
Examples of symplectic Cremona transformations
(i) (C*)™, S1,,(Z) are subgroups of SCr,

(i) (mutations) Let T = Spec C[N] be an n-dimensional torus,
h € M = Hom(N,Z), and f € C[ht] C C[N], then

b: a7V s ) - P>

is volume preserving.
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Another generalisation of results on Cry and SCry

Generalisation of Noether-Castelnuovo’s theorem on Cra:

Theorem (Sarkisov, Reid, Corti, Hacon-McKernan)

A birational map between Mori fibre spaces is a composition of Sarkisov links.




Another generalisation of results on Cry and SCry

Generalisation of Noether-Castelnuovo’s theorem on Cra:

A birational map between Mori fibre spaces is a composition of Sarkisov links.

Theorem (Sarkisov, Reid, Corti, Hacon-McKernan) J

Generalisation of Usnich-Blanc’s theorem on SCry:

Theorem (Corti-K.)

A volume preserving birational map between Mori fibred Calabi—Yau pairs is a
composition of volume preserving Sarkisov links.
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Sarkisov program

Proof of Noether-Castelnuovo:
(Noether) if ¢: P? --» P? not biregular, then 3P? -5 P? quadratic with

deg(co ) < degy
(Castelnuovo) proof relies on:

Theorem

Any birational map ¢: P? --» P? is a chain of the following elementary maps

]:12<E—F1 ]Fk:__>Fk:|:1 71472 PIXPI;PIXPI
pt<—P! P! ——P! P! —— pt P! P!
Type I Type II Type III Type IV
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Sarkisov program

A Mori fibre space (Mfs) X/S
- a Q-factorial terminal variety X
- and a fibration f: X — S such that f.Ox = Og, —Kx is f-ample, and
p(X) = p(S) =1



Sarkisov program

A Mori fibre space (Mfs) X/S
- a Q-factorial terminal variety X

- and a fibration f: X — S such that f.Ox = Og, —Kx is f-ample, and
p(X) —p(S) =1
Classical Minimal Model Program (MMP): if Z is a uniruled projective
manifold, the MMP on Z terminates with a Mfs

D 8/ 19



Sarkisov program

A Mori fibre space (Mfs) X/S
- a Q-factorial terminal variety X
- and a fibration f: X — S such that f.Ox = Og, —Kx is f-ample, and
p(X) —p(S) =1
Classical Minimal Model Program (MMP): if Z is a uniruled projective
manifold, the MMP on Z terminates with a Mfs

Sarkisov program (Hacon-McKernan)

A birational map between Mfs X/S and X’/S’ is a composition of Sarkisov
links

e WS



Sarkisov program

A Mori fibre space (Mfs) X/S
- a Q-factorial terminal variety X
- and a fibration f: X — S such that f.Ox = Og, —Kx is f-ample, and
p(X) —p(S) =1
Classical Minimal Model Program (MMP): if Z is a uniruled projective
manifold, the MMP on Z terminates with a Mfs

Sarkisov program (Hacon-McKernan)

A birational map between Mfs X/S and X’/S’ is a composition of Sarkisov
links

Structure theorem: identifies “generators” of Bir X for any Mfs X
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Sarkisov program
Sarkisov link ¢: X/S --+» X'/S5": a commutative diagram

Type I
inverse Type 111

Z--=X'

N

X S’

.

Z — X divisorial
contraction; Z --+» X'
sequence of flips, flops
and inverse flips




Sarkisov program
Sarkisov link ¢: X/S --+» X'/S5": a commutative diagram

Type I
inverse Type III Type II

Z-—-=27

AR IVAERN
" |

Z — X and Z' — X' divisorial
contractions; Z --» Z'
sequence of flips, flops and
inverse flips

Z — X divisorial
contraction; Z --+» X'
sequence of flips, flops
and inverse flips
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Sarkisov program
Sarkisov link ¢: X/S --+» X'/S5": a commutative diagram

Type I
T II
inverse Type 111 ype Type IV

!
Z—-—->7 Yoo Y

AT
L N

, S o
7 — X and Z' — X' divisorial X - X’ sequence of

contractions; Z --» Z' ) .
. flips, flops and inverse
sequence of flips, flops and

inverse flips

Z — X divisorial
contraction; Z --+» X'
sequence of flips, flops
and inverse flips

flips

All intermediate varieties terminal Q-factorial
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R —.
Calabi—Yau pairs

A Calabi-Yau pair (X, D) consists of
- a normal variety X
- a reduced effective Weil divisor D with Kx + D ~ 0

A Calabi-Yau pair (X, D) has (t, dlt) (resp. (t, lc)) singularities if
- X has terminal singularities
- the pair (X, D) is dlt (resp. lc)

A Mori fibred Calabi-Yau pair (X/S, D) is a (t, lc) CY pair with X/S a Mfs

A Mori fibred CY pair (X/S, D) is the end product of a classical MMP and
the end product of a log-MMP for (X, D) J
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R —.
Examples of Calabi-Yau pairs

Mori fibred rational Calabi-Yau surface pairs
1. (P?, D) where D is
- a smooth elliptic curve
- L+ C aline and a conic
- L1+ Ly + L3 = {zoxz122 = 0} union of 3 lines
- a cubic curve with a node

2. (Fy, D) where D is

- Cl+02+03+c4> (01702,03,04):(U,f70'+kf7f)
- Ci1+Cy+Cs, (C1,C2,C3) = (o, f,o+ (1 + k) f)
'Cl+025 (01502):(05f70+(2+k)f5f)
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R —.
Examples of Calabi-Yau pairs

Mori fibred rational Calabi-Yau surface pairs
1. (P?, D) where D is
- a smooth elliptic curve
- L+ C aline and a conic
- L1+ Ly + L3 = {zoxz122 = 0} union of 3 lines
- a cubic curve with a node

2. (Fn, D) where D is

- C1+Co+C3+Cy, (C1,C,C3,Cy) = (o, f,o+kf, )
- Ci1+Cy+Cs, (C1,C2,C3) = (o, f,o+ (1 + k) f)
- Cl+025 (01502):(05f70+(2+k)f5f)

3. a few extra cases (Fy, D) where N < 2 and o not a component of D
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R —.
Examples of Calabi-Yau pairs

4. (S,D) a Mf CY surface pair and o: S — S the blowup of Py, -, P
distinet points on D — Sing(D). The pair (S,0, D) is a (t,dlt) CY pair if
(S, D) is dlt, and a (t, lc) pair otherwise
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Examples of Calabi-Yau pairs

4. (S,D) a Mf CY surface pair and o: S — S the blowup of Py, -, P
distinet points on D — Sing(D). The pair (S,0, D) is a (t,dlt) CY pair if
(S, D) is dlt, and a (t, lc) pair otherwise

5. (S, D) be a Mf CY surface pair and a:ﬁ' — S the blowup of Py, -, Py
distinct points on Sing(D). The pair (S,0*D) is a (t, 1Ic) CY pair

6. X a nonsingular toric variety, D = > D, the sum of the T-invariant
divisors; then (X, D) is a (t, dlt) CY pair

7. X a smooth weak Fano 3-fold and D € |—Kx| a general anticanonical
section; then (X, D) is a (t, dlt) CY pair
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Factorisation of volume preserving maps of lc CY pairs

Theorem (CK)

Let (X, D) and (X', D’) be lc CY pairs and ¢: X --» X’ a volume preserving
birational map. Then there are Q-factorial (t, dlt) CY pairs (Y, Dy ),
(Y', Dy-) and a commutative diagram of birational maps:

Y- 2>y’
gl lg'
B¢

where:
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Factorisation of volume preserving maps of lc CY pairs

Theorem (CK)

Let (X, D) and (X', D’) be lc CY pairs and ¢: X --» X’ a volume preserving
birational map. Then there are Q-factorial (t, dlt) CY pairs (Y, Dy ),
(Y', Dy-) and a commutative diagram of birational maps:

Y- 2>y’
gl lg'
B¢

where:

(1) the morphisms g: Y — X, ¢’: Y/ — X' are volume preserving;
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Factorisation of volume preserving maps of lc CY pairs

Theorem (CK)

Let (X, D) and (X', D’) be lc CY pairs and ¢: X --» X’ a volume preserving
birational map. Then there are Q-factorial (t, dlt) CY pairs (Y, Dy),
(Y', Dy-) and a commutative diagram of birational maps:

Y- 2>y’
gl lg'
B¢

where:
(1) the morphisms g: Y — X, ¢’: Y/ — X' are volume preserving;

(2) x:Y --»Y' is a volume preserving isomorphism in codimension 1 which is
a composition of volume preserving flips, flops and inverse flips between
terminal Q-factorial varieties
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Factorisation of volume preserving maps of lc CY pairs

Main subtlety: Ensure that the decomposition of x only involves varieties with
terminal singularities J

Want to run two different MMPs at the same time
- limiting case of the Sarkisov program for pairs

- Sarkisov program for varieties

Working with pairs usually spoils the singularities of the underlying varieties
Working with varieties does not preserve singularities of pairs
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Factorisation of volume preserving maps of lc CY pairs

A non-example.. or how it could go wrong!
Let E =P' x P! and W the total space of the vector bundle Og(—1, —2).

Let Dy C W be a smooth surface such that Dy N E is a ruling in E and a
(—=2)-curve in Dy .
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Factorisation of volume preserving maps of lc CY pairs

A non-example.. or how it could go wrong!
Let E =P' x P! and W the total space of the vector bundle Og(—1, —2).

Let Dy C W be a smooth surface such that Dy N E is a ruling in E and a
(—=2)-curve in Dy .

Let f: W — Y be the contraction of E along the first ruling and f': W — Y’
the contraction along the second ruling.

Then (Y, D) and (Y’, D’) are both dlt, Y’ is terminal, Y is canonical but not
terminal, and the map Y --» Y’ is volume preserving.
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Factorisation of volume preserving maps of lc CY pairs
Sketch proof

Step 1. Take a common resolution

f % Kw+Dw =[f"(Kx+D)+F
/ \ :fl*(KX/+DI)+F
for DW = ZaE=—1 E,F = ZaE>0 aEE

Step 2. (Y, Dy)/(Y', Dy+)=end product of the (K + Dy )-MMP over X/X’
Crucial: W --» Y and W --» Y’ isomorphisms near nklt loci
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Factorisation of volume preserving maps of lc CY pairs
Sketch proof

Step 1. Take a common resolution

f f Kw+Dw =[f"(Kx+D)+F
=f"(Kx +D')+F
for DW = ZaE=—1 E,F = ZaE>0 aEE

Step 2. (Y, Dy)/(Y', Dy+)=end product of the (K + Dy )-MMP over X/X’
Crucial: W --» Y and W --» Y’ isomorphisms near nklt loci

Step 3. Induced Y Xy isomorphism in codimension 1

For suitable © (perturbation of Dy ), (Y, ©) is kIt and x is a (Ky + ©)-MMP
X is a composition of (Ky + ©)-flips that are also (K + D)-flops and all
intermediate varieties are terminal
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Sketch proof of the main theorem

Setup:
) (L S 7
| g
X---"~_sx
pl lp/
S S’

(i) Y and Y’ have Q-factorial terminal singularities and g: ¥ — X and
g 1Y — X' are birational morphisms

(ii) x: Y --» Y is the composition of flips, flops and inverse flips between
terminal Q-factorial varieties

(iii) p: X — S and p': X’ — 5 are Mfs
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Sketch proof of the main theorem

(Hacon—McKernan) Two Mfs that are end products of the classical MMP on
the same variety are connected by a chain of Sarkisov links

Let x = xn o+ 0 X be the decomposition of x into elementary flips, flops
and inverse flips

Xit Yi-=>Yip

Let f;: Y; --+ X;/S; a classical MMP, then (X;/S;, f;+D;) is a Mf CY pair

Depending on whether x; is a flip, flop or antiflip, X;/S; and X;;1/5;41 are
both end products of the MMP on Y; or on Y1
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